(* $Id$ *) open Pp open Util open Names open Generic open Term open Sign open Declarations open Inductive open Reduction open Type_errors open Typeops open Libobject open Lib open Impargs open Indrec type strength = | DischargeAt of section_path | NeverDischarge let make_strength = function | [] -> NeverDischarge | l -> DischargeAt (sp_of_wd l) let make_strength_0 () = make_strength (Lib.cwd()) let make_strength_1 () = let cwd = Lib.cwd() in let path = try list_firstn (List.length cwd - 1) cwd with Failure _ -> [] in make_strength path let make_strength_2 () = let cwd = Lib.cwd() in let path = try list_firstn (List.length cwd - 2) cwd with Failure _ -> [] in make_strength path (* Variables. *) type sticky = bool type variable_declaration = constr * strength * sticky let vartab = ref (Spmap.empty : (identifier * variable_declaration) Spmap.t) let _ = Summary.declare_summary "VARIABLE" { Summary.freeze_function = (fun () -> !vartab); Summary.unfreeze_function = (fun ft -> vartab := ft); Summary.init_function = (fun () -> vartab := Spmap.empty) } let cache_variable (sp,(id,(ty,_,_) as vd,imps)) = Global.push_var (id,ty); Nametab.push id sp; if imps then declare_var_implicits id; vartab := Spmap.add sp vd !vartab let load_variable _ = () let open_variable _ = () let specification_variable x = x let (in_variable, out_variable) = let od = { cache_function = cache_variable; load_function = load_variable; open_function = open_variable; specification_function = specification_variable } in declare_object ("VARIABLE", od) let declare_variable id obj = let _ = add_leaf id CCI (in_variable ((id,obj),is_implicit_args())) in () (* Parameters. *) let cache_parameter (sp,(c,imps)) = Global.add_parameter sp c; Nametab.push (basename sp) sp; if imps then declare_constant_implicits sp let load_parameter (sp,(_,imps)) = if imps then declare_constant_implicits sp let open_parameter (sp,_) = Nametab.push (basename sp) sp let specification_parameter obj = obj let (in_parameter, out_parameter) = let od = { cache_function = cache_parameter; load_function = load_parameter; open_function = open_parameter; specification_function = specification_parameter } in declare_object ("PARAMETER", od) let declare_parameter id c = let _ = add_leaf id CCI (in_parameter (c,is_implicit_args())) in () (* Constants. *) type constant_declaration = constant_entry * strength let csttab = ref (Spmap.empty : constant_declaration Spmap.t) let _ = Summary.declare_summary "CONSTANT" { Summary.freeze_function = (fun () -> !csttab); Summary.unfreeze_function = (fun ft -> csttab := ft); Summary.init_function = (fun () -> csttab := Spmap.empty) } let cache_constant (sp,((ce,_) as cd,imps)) = Global.add_constant sp ce; Nametab.push (basename sp) sp; if imps then declare_constant_implicits sp; csttab := Spmap.add sp cd !csttab let load_constant (sp,((ce,_) as cd,imps)) = if imps then declare_constant_implicits sp; csttab := Spmap.add sp cd !csttab let open_constant (sp,_) = Nametab.push (basename sp) sp let specification_constant obj = obj let (in_constant, out_constant) = let od = { cache_function = cache_constant; load_function = load_constant; open_function = open_constant; specification_function = specification_constant } in declare_object ("CONSTANT", od) let declare_constant id cd = let _ = add_leaf id CCI (in_constant (cd,is_implicit_args())) in () (* Inductives. *) let push_inductive_names sp mie = List.iter (fun (id,_,cnames,_) -> Nametab.push id sp; List.iter (fun x -> Nametab.push x sp) cnames) mie.mind_entry_inds let cache_inductive (sp,(mie,imps)) = Global.add_mind sp mie; push_inductive_names sp mie; if imps then declare_inductive_implicits sp let load_inductive (sp,(_,imps)) = if imps then declare_inductive_implicits sp let open_inductive (sp,(mie,_)) = push_inductive_names sp mie let specification_inductive obj = obj let (in_inductive, out_inductive) = let od = { cache_function = cache_inductive; load_function = load_inductive; open_function = open_inductive; specification_function = specification_inductive } in declare_object ("INDUCTIVE", od) let declare_mind mie = let id = match mie.mind_entry_inds with | (id,_,_,_)::_ -> id | [] -> anomaly "cannot declare an empty list of inductives" in let sp = add_leaf id CCI (in_inductive (mie,is_implicit_args())) in sp (* Test and access functions. *) let is_constant sp = try let _ = Global.lookup_constant sp in true with Not_found -> false let constant_strength sp = let (_,stre) = Spmap.find sp !csttab in stre let constant_or_parameter_strength sp = try constant_strength sp with Not_found -> NeverDischarge let is_variable id = let sp = Nametab.sp_of_id CCI id in Spmap.mem sp !vartab let out_variable sp = let (id,(_,str,sticky)) = Spmap.find sp !vartab in let (_,ty) = Global.lookup_var id in (id,ty,str,sticky) let variable_strength id = let sp = Nametab.sp_of_id CCI id in let _,(_,str,_) = Spmap.find sp !vartab in str (* Global references. *) let first f v = let n = Array.length v in let rec look_for i = if i = n then raise Not_found; try f i v.(i) with Not_found -> look_for (succ i) in look_for 0 let mind_oper_of_id sp id mib = first (fun tyi mip -> if id = mip.mind_typename then MutInd (sp,tyi) else first (fun cj cid -> if id = cid then MutConstruct((sp,tyi),succ cj) else raise Not_found) mip.mind_consnames) mib.mind_packets let construct_operator env sp id = try let cb = Environ.lookup_constant sp env in Const sp, cb.const_hyps with Not_found -> let mib = Environ.lookup_mind sp env in mind_oper_of_id sp id mib, mib.mind_hyps let global_operator sp id = construct_operator (Global.env()) sp id let construct_sp_reference env sp id = let (oper,hyps) = construct_operator env sp id in let hyps' = Global.var_context () in if not (hyps_inclusion env Evd.empty hyps hyps') then error_reference_variables CCI env id; let ids = ids_of_sign hyps in DOPN(oper, Array.of_list (List.map (fun id -> VAR id) ids)) let construct_reference env kind id = try let sp = Nametab.sp_of_id kind id in construct_sp_reference env sp id with Not_found -> VAR (let _ = Environ.lookup_var id env in id) let global_sp_reference sp id = construct_sp_reference (Global.env()) sp id let global_reference kind id = construct_reference (Global.env()) kind id let global_reference_imps kind id = let c = global_reference kind id in match c with | DOPN (Const sp,_) -> c, list_of_implicits (constant_implicits sp) | DOPN (MutInd (sp,i),_) -> c, list_of_implicits (inductive_implicits (sp,i)) | DOPN (MutConstruct ((sp,i),j),_) -> c, list_of_implicits (constructor_implicits ((sp,i),j)) | VAR id -> c, implicits_of_var id | _ -> assert false let global env id = try let _ = lookup_glob id (Environ.context env) in VAR id with Not_found -> global_reference CCI id let is_global id = try let osp = Nametab.sp_of_id CCI id in list_prefix_of (dirpath osp) (Lib.cwd()) with Not_found -> false let path_of_constructor_path ((sp,tyi),ind) = let mib = Global.lookup_mind sp in let mip = mind_nth_type_packet mib tyi in let (pa,_,k) = repr_path sp in Names.make_path pa (mip.mind_consnames.(ind-1)) k let path_of_inductive_path (sp,tyi) = if tyi = 0 then sp else let mib = Global.lookup_mind sp in let mip = mind_nth_type_packet mib tyi in let (pa,_,k) = repr_path sp in Names.make_path pa (mip.mind_typename) k (* Eliminations. *) let declare_eliminations sp i = let oper = MutInd (sp,i) in let mib = Global.lookup_mind sp in let ids = ids_of_sign mib.mind_hyps in let ctxt = Array.of_list (List.map (fun id -> VAR id) ids) in let mispec = Global.lookup_mind_specif ((sp,i),ctxt) in let mindstr = string_of_id (mis_typename mispec) in let declare na c = declare_constant (id_of_string na) ({ const_entry_body = Cooked c; const_entry_type = None }, NeverDischarge); if Options.is_verbose() then pPNL [< 'sTR na; 'sTR " is defined" >] in let env = Global.env () in let sigma = Evd.empty in let elim_scheme = build_indrec env sigma mispec in let npars = mis_nparams mispec in let make_elim s = instanciate_indrec_scheme s npars elim_scheme in let kelim = mis_kelim mispec in if List.mem prop kelim then declare (mindstr^"_ind") (make_elim prop); if List.mem spec kelim then declare (mindstr^"_rec") (make_elim spec); if List.mem types kelim then declare (mindstr^"_rect") (make_elim (Type (Univ.new_univ sp)))