(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* bool (** Is the universe set or prop? *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function *) (* val hash : t -> int *) (** Hash function *) val make : Names.DirPath.t -> int -> t (** Create a new universe level from a unique identifier and an associated module path. *) val pr : t -> Pp.std_ppcmds (** Pretty-printing *) end type universe_level = Level.t (** Alias name. *) (** Sets of universe levels *) module LSet : sig include Set.S with type elt = universe_level val pr : t -> Pp.std_ppcmds (** Pretty-printing *) end type universe_set = LSet.t (** Polymorphic maps from universe levels to 'a *) module LMap : sig include Map.S with type key = universe_level val union : 'a t -> 'a t -> 'a t (** [union x y] favors the bindings in the first map. *) val diff : 'a t -> 'a t -> 'a t (** [diff x y] removes bindings from x that appear in y (whatever the value). *) val subst_union : 'a option t -> 'a option t -> 'a option t (** [subst_union x y] favors the bindings of the first map that are [Some], otherwise takes y's bindings. *) val elements : 'a t -> (universe_level * 'a) list (** As an association list *) val of_list : (universe_level * 'a) list -> 'a t (** From an association list *) val of_set : universe_set -> 'a -> 'a t (** Associates the same value to all levels in the set *) val mem : universe_level -> 'a t -> bool (** Is there a binding for the level? *) val find_opt : universe_level -> 'a t -> 'a option (** Find the value associated to the level, if any *) val universes : 'a t -> universe_set (** The domain of the map *) val pr : ('a -> Pp.std_ppcmds) -> 'a t -> Pp.std_ppcmds (** Pretty-printing *) end type 'a universe_map = 'a LMap.t module Universe : sig type t (** Type of universes. A universe is defined as a set of level expressions. A level expression is built from levels and successors of level expressions, i.e.: le ::= l + n, n \in N. A universe is said atomic if it consists of a single level expression with no increment, and algebraic otherwise (think the least upper bound of a set of level expressions). *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function on formal universes *) val hash : t -> int (** Hash function *) val make : Level.t -> t (** Create a universe representing the given level. *) val pr : t -> Pp.std_ppcmds (** Pretty-printing *) val level : t -> Level.t option (** Try to get a level out of a universe, returns [None] if it is an algebraic universe. *) val levels : t -> LSet.t (** Get the levels inside the universe, forgetting about increments *) val super : t -> t (** The universe strictly above *) val sup : t -> t -> t (** The l.u.b. of 2 universes *) val type0m : t (** image of Prop in the universes hierarchy *) val type0 : t (** image of Set in the universes hierarchy *) val type1 : t (** the universe of the type of Prop/Set *) end type universe = Universe.t (** Alias name. *) val pr_uni : universe -> Pp.std_ppcmds (** The universes hierarchy: Type 0- = Prop <= Type 0 = Set <= Type 1 <= ... Typing of universes: Type 0-, Type 0 : Type 1; Type i : Type (i+1) if i>0 *) val type0m_univ : universe val type0_univ : universe val type1_univ : universe val is_type0_univ : universe -> bool val is_type0m_univ : universe -> bool val is_univ_variable : universe -> bool val is_small_univ : universe -> bool val sup : universe -> universe -> universe val super : universe -> universe val universe_level : universe -> universe_level option (** {6 Graphs of universes. } *) type universes type 'a check_function = universes -> 'a -> 'a -> bool val check_leq : universe check_function val check_eq : universe check_function val lax_check_eq : universe check_function (* same, without anomaly *) (** The empty graph of universes *) val empty_universes : universes (** The initial graph of universes: Prop < Set *) val initial_universes : universes val is_initial_universes : universes -> bool (** {6 Substitution} *) type universe_subst_fn = universe_level -> universe type universe_level_subst_fn = universe_level -> universe_level (** A full substitution, might involve algebraic universes *) type universe_subst = universe universe_map type universe_level_subst = universe_level universe_map val level_subst_of : universe_subst_fn -> universe_level_subst_fn (** {6 Universe instances} *) module Instance : sig type t (** A universe instance represents a vector of argument universes to a polymorphic definition (constant, inductive or constructor). *) val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t (** To concatenate two instances, used for discharge *) val equal : t -> t -> bool (** Equality (note: instances are hash-consed, this is O(1)) *) val hcons : t -> t (** Hash-consing. *) val hash : t -> int (** Hash value *) val share : t -> t * int (** Simultaneous hash-consing and hash-value computation *) val eqeq : t -> t -> bool (** Rely on physical equality of subterms only *) val subst_fn : universe_level_subst_fn -> t -> t (** Substitution by a level-to-level function. *) val subst : universe_level_subst -> t -> t (** Substitution by a level-to-level function. *) val pr : t -> Pp.std_ppcmds (** Pretty-printing, no comments *) val levels : t -> LSet.t (** The set of levels in the instance *) val check_eq : t check_function (** Check equality of instances w.r.t. a universe graph *) end type universe_instance = Instance.t type 'a puniverses = 'a * universe_instance val out_punivs : 'a puniverses -> 'a val in_punivs : 'a -> 'a puniverses (** {6 Constraints. } *) type constraint_type = Lt | Le | Eq type univ_constraint = universe_level * constraint_type * universe_level module Constraint : sig include Set.S with type elt = univ_constraint end type constraints = Constraint.t val empty_constraint : constraints val union_constraint : constraints -> constraints -> constraints val eq_constraint : constraints -> constraints -> bool (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** A list of universes with universe constraints, representiong local universe variables and constraints *) module UContext : sig type t val make : Instance.t constrained -> t val empty : t val is_empty : t -> bool val instance : t -> Instance.t val constraints : t -> constraints (** Keeps the order of the instances *) val union : t -> t -> t end type universe_context = UContext.t (** Universe contexts (as sets) *) module ContextSet : sig type t = universe_set constrained val empty : t val is_empty : t -> bool val singleton : universe_level -> t val of_instance : Instance.t -> t val of_set : universe_set -> t val union : t -> t -> t val diff : t -> t -> t val add_constraints : t -> constraints -> t val add_universes : Instance.t -> t -> t (** Arbitrary choice of linear order of the variables and normalization of the constraints *) val to_context : t -> universe_context val of_context : universe_context -> t val constraints : t -> constraints val levels : t -> universe_set end (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set (** {6 Constraints for type inference} When doing conversion of universes, not only do we have =/<= constraints but also Lub constraints which correspond to unification of two levels that might not be necessary if unfolding is performed. *) type universe_constraint_type = ULe | UEq | ULub type universe_constraint = universe * universe_constraint_type * universe module UniverseConstraints : sig include Set.S with type elt = universe_constraint val pr : t -> Pp.std_ppcmds end type universe_constraints = UniverseConstraints.t type 'a universe_constrained = 'a * universe_constraints (** Constrained *) val constraints_of : 'a constrained -> constraints (** [check_context_subset s s'] checks that [s] is implied by [s'] as a set of constraints, and shrinks [s'] to the set of variables declared in [s]. . *) val check_context_subset : universe_context_set -> universe_context -> universe_context (** Make a universe level substitution: the list must match the context variables. *) val make_universe_subst : Instance.t -> universe_context -> universe_subst val empty_subst : universe_subst val is_empty_subst : universe_subst -> bool val empty_level_subst : universe_level_subst val is_empty_level_subst : universe_level_subst -> bool (** Get the instantiated graph. *) val instantiate_univ_context : universe_subst -> universe_context -> constraints (** Substitution of universes. *) val subst_univs_level_level : universe_level_subst -> universe_level -> universe_level val subst_univs_level_universe : universe_level_subst -> universe -> universe val subst_univs_level_constraints : universe_level_subst -> constraints -> constraints val normalize_univs_level_level : universe_level_subst -> universe_level -> universe_level val make_subst : universe_subst -> universe_subst_fn (* val subst_univs_level_fail : universe_subst_fn -> universe_level -> universe_level *) val subst_univs_level : universe_subst_fn -> universe_level -> universe val subst_univs_universe : universe_subst_fn -> universe -> universe val subst_univs_constraints : universe_subst_fn -> constraints -> constraints val subst_univs_universe_constraints : universe_subst_fn -> universe_constraints -> universe_constraints (** Raises universe inconsistency if not compatible. *) val check_consistent_constraints : universe_context_set -> constraints -> unit type 'a constraint_function = 'a -> 'a -> constraints -> constraints val enforce_leq : universe constraint_function val enforce_eq : universe constraint_function val enforce_eq_level : universe_level constraint_function val enforce_leq_level : universe_level constraint_function val enforce_eq_instances : universe_instance constraint_function type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints val enforce_eq_instances_univs : bool -> universe_instance universe_constraint_function (** {6 ... } *) (** Merge of constraints in a universes graph. The function [merge_constraints] merges a set of constraints in a given universes graph. It raises the exception [UniverseInconsistency] if the constraints are not satisfiable. *) (** Type explanation is used to decorate error messages to provide useful explanation why a given constraint is rejected. It is composed of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means .. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol denoted by ri, currently only < and <=). The lowest end of the chain is supposed known (see UniverseInconsistency exn). The upper end may differ from the second univ of UniverseInconsistency because all universes in the path are canonical. Note that each step does not necessarily correspond to an actual constraint, but reflect how the system stores the graph and may result from combination of several constraints... *) type explanation = (constraint_type * universe) list type univ_inconsistency = constraint_type * universe * universe * explanation exception UniverseInconsistency of univ_inconsistency val enforce_constraint : univ_constraint -> universes -> universes val merge_constraints : constraints -> universes -> universes val normalize_universes : universes -> universes val sort_universes : universes -> universes val constraints_of_universes : universes -> constraints val to_constraints : universes -> universe_constraints -> constraints val check_constraint : universes -> univ_constraint -> bool val check_constraints : constraints -> universes -> bool (** {6 Support for sort-polymorphism } *) val solve_constraints_system : universe option array -> universe array -> universe array -> universe array val remove_large_constraint : universe_level -> universe -> universe -> universe val subst_large_constraint : universe -> universe -> universe -> universe val subst_large_constraints : (universe * universe) list -> universe -> universe val no_upper_constraints : universe -> constraints -> bool (** Is u mentionned in v (or equals to v) ? *) val univ_depends : universe -> universe -> bool (** {6 Pretty-printing of universes. } *) val pr_universes : universes -> Pp.std_ppcmds val pr_constraint_type : constraint_type -> Pp.std_ppcmds val pr_constraints : constraints -> Pp.std_ppcmds (* val pr_universe_list : universe_list -> Pp.std_ppcmds *) val pr_universe_context : universe_context -> Pp.std_ppcmds val pr_universe_context_set : universe_context_set -> Pp.std_ppcmds val pr_universe_level_subst : universe_level_subst -> Pp.std_ppcmds val pr_universe_subst : universe_subst -> Pp.std_ppcmds val explain_universe_inconsistency : univ_inconsistency -> Pp.std_ppcmds (** {6 Dumping to a file } *) val dump_universes : (constraint_type -> string -> string -> unit) -> universes -> unit (** {6 Hash-consing } *) val hcons_univ : universe -> universe val hcons_constraints : constraints -> constraints val hcons_universe_set : universe_set -> universe_set val hcons_universe_context : universe_context -> universe_context val hcons_universe_context_set : universe_context_set -> universe_context_set (******) (* deprecated: use qualified names instead *) val compare_levels : universe_level -> universe_level -> int val eq_levels : universe_level -> universe_level -> bool (** deprecated: Equality of formal universe expressions. *) val equal_universes : universe -> universe -> bool