(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* string -> int -> t val repr : t -> Names.DirPath.t * string * int val equal : t -> t -> bool val hash : t -> int val compare : t -> t -> int end (** Qualified global universe level *) type t (** Type of universe levels. A universe level is essentially a unique name that will be associated to constraints later on. A level can be local to a definition or global. *) val set : t val prop : t val sprop : t (** The set and prop universe levels. *) val is_small : t -> bool (** Is the universe set or prop? *) val is_sprop : t -> bool val is_prop : t -> bool val is_set : t -> bool (** Is it specifically Prop or Set *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function *) val hash : t -> int val make : UGlobal.t -> t val pr : t -> Pp.t (** Pretty-printing *) val to_string : t -> string (** Debug printing *) val var : int -> t val var_index : t -> int option val name : t -> UGlobal.t option end (** Sets of universe levels *) module LSet : sig include CSig.SetS with type elt = Level.t val pr : (Level.t -> Pp.t) -> t -> Pp.t (** Pretty-printing *) end module Universe : sig type t (** Type of universes. A universe is defined as a set of level expressions. A level expression is built from levels and successors of level expressions, i.e.: le ::= l + n, n \in N. A universe is said atomic if it consists of a single level expression with no increment, and algebraic otherwise (think the least upper bound of a set of level expressions). *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function on formal universes *) val hash : t -> int (** Hash function *) val make : Level.t -> t (** Create a universe representing the given level. *) val pr : t -> Pp.t (** Pretty-printing *) val pr_with : (Level.t -> Pp.t) -> t -> Pp.t val is_level : t -> bool (** Test if the universe is a level or an algebraic universe. *) val is_levels : t -> bool (** Test if the universe is a lub of levels or contains +n's. *) val level : t -> Level.t option (** Try to get a level out of a universe, returns [None] if it is an algebraic universe. *) val levels : t -> LSet.t (** Get the levels inside the universe, forgetting about increments *) val super : t -> t (** The universe strictly above *) val sup : t -> t -> t (** The l.u.b. of 2 universes *) val sprop : t val type0m : t (** image of Prop in the universes hierarchy *) val type0 : t (** image of Set in the universes hierarchy *) val type1 : t (** the universe of the type of Prop/Set *) val is_sprop : t -> bool val is_type0m : t -> bool val is_type0 : t -> bool val exists : (Level.t * int -> bool) -> t -> bool val for_all : (Level.t * int -> bool) -> t -> bool val repr : t -> (Level.t * int) list module Set : CSet.S with type elt = t module Map : CMap.ExtS with type key = t and module Set := Set end (** Alias name. *) val pr_uni : Universe.t -> Pp.t (** The universes hierarchy: Type 0- = Prop <= Type 0 = Set <= Type 1 <= ... Typing of universes: Type 0-, Type 0 : Type 1; Type i : Type (i+1) if i>0 *) val type0m_univ : Universe.t val type0_univ : Universe.t val type1_univ : Universe.t val is_type0_univ : Universe.t -> bool val is_type0m_univ : Universe.t -> bool val is_univ_variable : Universe.t -> bool val is_small_univ : Universe.t -> bool val sup : Universe.t -> Universe.t -> Universe.t val super : Universe.t -> Universe.t val universe_level : Universe.t -> Level.t option (** [univ_level_mem l u] Is l is mentioned in u ? *) val univ_level_mem : Level.t -> Universe.t -> bool (** [univ_level_rem u v min] removes [u] from [v], resulting in [min] if [v] was exactly [u]. *) val univ_level_rem : Level.t -> Universe.t -> Universe.t -> Universe.t (** {6 Constraints. } *) type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq type univ_constraint = Level.t * constraint_type * Level.t module Constraint : sig include Set.S with type elt = univ_constraint end val empty_constraint : Constraint.t val union_constraint : Constraint.t -> Constraint.t -> Constraint.t val eq_constraint : Constraint.t -> Constraint.t -> bool (** A value with universe Constraint.t. *) type 'a constrained = 'a * Constraint.t (** Constrained *) val constraints_of : 'a constrained -> Constraint.t (** Enforcing Constraint.t. *) type 'a constraint_function = 'a -> 'a -> Constraint.t -> Constraint.t val enforce_eq : Universe.t constraint_function val enforce_leq : Universe.t constraint_function val enforce_eq_level : Level.t constraint_function val enforce_leq_level : Level.t constraint_function (** Type explanation is used to decorate error messages to provide useful explanation why a given constraint is rejected. It is composed of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means .. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol denoted by ri, currently only < and <=). The lowest end of the chain is supposed known (see UniverseInconsistency exn). The upper end may differ from the second univ of UniverseInconsistency because all universes in the path are canonical. Note that each step does not necessarily correspond to an actual constraint, but reflect how the system stores the graph and may result from combination of several Constraint.t... *) type explanation = (constraint_type * Level.t) list type univ_inconsistency = constraint_type * Universe.t * Universe.t * explanation Lazy.t option exception UniverseInconsistency of univ_inconsistency (** {6 Support for universe polymorphism } *) (** Polymorphic maps from universe levels to 'a *) module LMap : sig include CMap.ExtS with type key = Level.t and module Set := LSet val lunion : 'a t -> 'a t -> 'a t (** [lunion x y] favors the bindings in the first map. *) val diff : 'a t -> 'a t -> 'a t (** [diff x y] removes bindings from x that appear in y (whatever the value). *) val subst_union : 'a option t -> 'a option t -> 'a option t (** [subst_union x y] favors the bindings of the first map that are [Some], otherwise takes y's bindings. *) val pr : ('a -> Pp.t) -> 'a t -> Pp.t (** Pretty-printing *) end type 'a universe_map = 'a LMap.t (** {6 Substitution} *) type universe_subst_fn = Level.t -> Universe.t type universe_level_subst_fn = Level.t -> Level.t (** A full substitution, might involve algebraic universes *) type universe_subst = Universe.t universe_map type universe_level_subst = Level.t universe_map module Variance : sig (** A universe position in the instance given to a cumulative inductive can be the following. Note there is no Contravariant case because [forall x : A, B <= forall x : A', B'] requires [A = A'] as opposed to [A' <= A]. *) type t = Irrelevant | Covariant | Invariant (** [check_subtype x y] holds if variance [y] is also an instance of [x] *) val check_subtype : t -> t -> bool val sup : t -> t -> t val pr : t -> Pp.t val equal : t -> t -> bool end (** {6 Universe instances} *) module Instance : sig type t (** A universe instance represents a vector of argument universes to a polymorphic definition (constant, inductive or constructor). *) val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t (** To concatenate two instances, used for discharge *) val equal : t -> t -> bool (** Equality *) val length : t -> int (** Instance length *) val hcons : t -> t (** Hash-consing. *) val hash : t -> int (** Hash value *) val share : t -> t * int (** Simultaneous hash-consing and hash-value computation *) val subst_fn : universe_level_subst_fn -> t -> t (** Substitution by a level-to-level function. *) val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t (** Pretty-printing, no comments *) val levels : t -> LSet.t (** The set of levels in the instance *) end val enforce_eq_instances : Instance.t constraint_function val enforce_eq_variance_instances : Variance.t array -> Instance.t constraint_function val enforce_leq_variance_instances : Variance.t array -> Instance.t constraint_function type 'a puniverses = 'a * Instance.t val out_punivs : 'a puniverses -> 'a val in_punivs : 'a -> 'a puniverses val eq_puniverses : ('a -> 'a -> bool) -> 'a puniverses -> 'a puniverses -> bool (** A vector of universe levels with universe Constraint.t, representing local universe variables and associated Constraint.t *) module UContext : sig type t val make : Instance.t constrained -> t val empty : t val is_empty : t -> bool val instance : t -> Instance.t val constraints : t -> Constraint.t val dest : t -> Instance.t * Constraint.t (** Keeps the order of the instances *) val union : t -> t -> t (** the number of universes in the context *) val size : t -> int end module AUContext : sig type t val make : Names.Name.t array -> Constraint.t -> t (** Build an abstract context. Constraints may be between universe variables. *) val repr : t -> UContext.t (** [repr ctx] is [(Var(0), ... Var(n-1) |= cstr] where [n] is the length of the context and [cstr] the abstracted Constraint.t. *) val empty : t val is_empty : t -> bool val size : t -> int (** Keeps the order of the instances *) val union : t -> t -> t val instantiate : Instance.t -> t -> Constraint.t (** Generate the set of instantiated Constraint.t **) val names : t -> Names.Name.t array (** Return the names of the bound universe variables *) end type 'a univ_abstracted = { univ_abstracted_value : 'a; univ_abstracted_binder : AUContext.t; } (** A value with bound universe levels. *) val map_univ_abstracted : ('a -> 'b) -> 'a univ_abstracted -> 'b univ_abstracted (** Universe contexts (as sets) *) (** A set of universes with universe Constraint.t. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet : sig type t = LSet.t constrained val empty : t val is_empty : t -> bool val singleton : Level.t -> t val of_instance : Instance.t -> t val of_set : LSet.t -> t val equal : t -> t -> bool val union : t -> t -> t val append : t -> t -> t (** Variant of {!union} which is more efficient when the left argument is much smaller than the right one. *) val diff : t -> t -> t val add_universe : Level.t -> t -> t val add_constraints : Constraint.t -> t -> t val add_instance : Instance.t -> t -> t (** Arbitrary choice of linear order of the variables *) val sort_levels : Level.t array -> Level.t array val to_context : t -> UContext.t val of_context : UContext.t -> t val constraints : t -> Constraint.t val levels : t -> LSet.t (** the number of universes in the context *) val size : t -> int end (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * UContext.t type 'a in_universe_context_set = 'a * ContextSet.t val extend_in_context_set : 'a in_universe_context_set -> ContextSet.t -> 'a in_universe_context_set val empty_level_subst : universe_level_subst val is_empty_level_subst : universe_level_subst -> bool (** Substitution of universes. *) val subst_univs_level_level : universe_level_subst -> Level.t -> Level.t val subst_univs_level_universe : universe_level_subst -> Universe.t -> Universe.t val subst_univs_level_constraints : universe_level_subst -> Constraint.t -> Constraint.t val subst_univs_level_abstract_universe_context : universe_level_subst -> AUContext.t -> AUContext.t val subst_univs_level_instance : universe_level_subst -> Instance.t -> Instance.t (** Level to universe substitutions. *) val empty_subst : universe_subst val is_empty_subst : universe_subst -> bool val make_subst : universe_subst -> universe_subst_fn val subst_univs_universe : universe_subst_fn -> Universe.t -> Universe.t (** Only user in the kernel is template polymorphism. Ideally we get rid of this code if it goes away. *) (** Substitution of instances *) val subst_instance_instance : Instance.t -> Instance.t -> Instance.t val subst_instance_universe : Instance.t -> Universe.t -> Universe.t val make_instance_subst : Instance.t -> universe_level_subst (** Creates [u(0) ↦ 0; ...; u(n-1) ↦ n - 1] out of [u(0); ...; u(n - 1)] *) val make_inverse_instance_subst : Instance.t -> universe_level_subst val abstract_universes : Names.Name.t array -> UContext.t -> Instance.t * AUContext.t (** TODO: move universe abstraction out of the kernel *) val make_abstract_instance : AUContext.t -> Instance.t (** [compact_univ u] remaps local variables in [u] such that their indices become consecutive. It returns the new universe and the mapping. Example: compact_univ [(Var 0, i); (Prop, 0); (Var 2; j))] = [(Var 0,i); (Prop, 0); (Var 1; j)], [0; 2] *) val compact_univ : Universe.t -> Universe.t * int list (** {6 Pretty-printing of universes. } *) val pr_constraint_type : constraint_type -> Pp.t val pr_constraints : (Level.t -> Pp.t) -> Constraint.t -> Pp.t val pr_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array -> UContext.t -> Pp.t val pr_abstract_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array -> AUContext.t -> Pp.t val pr_universe_context_set : (Level.t -> Pp.t) -> ContextSet.t -> Pp.t val explain_universe_inconsistency : (Level.t -> Pp.t) -> univ_inconsistency -> Pp.t val pr_universe_level_subst : universe_level_subst -> Pp.t val pr_universe_subst : universe_subst -> Pp.t (** {6 Hash-consing } *) val hcons_univ : Universe.t -> Universe.t val hcons_constraints : Constraint.t -> Constraint.t val hcons_universe_set : LSet.t -> LSet.t val hcons_universe_context : UContext.t -> UContext.t val hcons_abstract_universe_context : AUContext.t -> AUContext.t val hcons_universe_context_set : ContextSet.t -> ContextSet.t