(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* incr _id;!_id), (fun () -> !_id), (fun i -> _id := i)) let dummy = -1 external to_int : t -> int = "%identity" external of_int : int -> t= "%identity" end module Hcons = struct module type SA = sig type data type t val make : data -> t val node : t -> data val hash : t -> int val uid : t -> Uid.t val equal : t -> t -> bool val stats : unit -> unit val init : unit -> unit end module type S = sig type data type t = private { id : Uid.t; key : int; node : data } val make : data -> t val node : t -> data val hash : t -> int val uid : t -> Uid.t val equal : t -> t -> bool val stats : unit -> unit val init : unit -> unit end module Make (H : Hashtbl.HashedType) : S with type data = H.t = struct let uid_make,uid_current,uid_set = Uid.make_maker() type data = H.t type t = { id : Uid.t; key : int; node : data } let node t = t.node let uid t = t.id let hash t = t.key let equal t1 t2 = t1 == t2 module WH = Weak.Make( struct type _t = t type t = _t let hash = hash let equal a b = a == b || H.equal a.node b.node end) let pool = WH.create 491 exception Found of Uid.t let total_count = ref 0 let miss_count = ref 0 let init () = total_count := 0; miss_count := 0 let make x = incr total_count; let cell = { id = Uid.dummy; key = H.hash x; node = x } in try WH.find pool cell with | Not_found -> let cell = { cell with id = uid_make(); } in incr miss_count; WH.add pool cell; cell exception Found of t let stats () = () end end module HList = struct module type S = sig type elt type 'a node = Nil | Cons of elt * 'a module rec Node : sig include Hcons.S with type data = Data.t end and Data : sig include Hashtbl.HashedType with type t = Node.t node end type data = Data.t type t = Node.t val hash : t -> int val uid : t -> Uid.t val make : data -> t val equal : t -> t -> bool val nil : t val is_nil : t -> bool val tip : elt -> t val node : t -> t node val cons : (* ?sorted:bool -> *) elt -> t -> t val hd : t -> elt val tl : t -> t val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a val map : (elt -> elt) -> t -> t val smartmap : (elt -> elt) -> t -> t val iter : (elt -> 'a) -> t -> unit val exists : (elt -> bool) -> t -> bool val exists_remove : (elt -> bool) -> t -> t val for_all : (elt -> bool) -> t -> bool val for_all2 : (elt -> elt -> bool) -> t -> t -> bool val rev : t -> t val rev_map : (elt -> elt) -> t -> t val length : t -> int val mem : elt -> t -> bool val remove : elt -> t -> t val stats : unit -> unit val init : unit -> unit val to_list : t -> elt list val compare : (elt -> elt -> int) -> t -> t -> int end module Make (H : Hcons.SA) : S with type elt = H.t = struct type elt = H.t type 'a node = Nil | Cons of elt * 'a module rec Node : Hcons.S with type data = Data.t = Hcons.Make (Data) and Data : Hashtbl.HashedType with type t = Node.t node = struct type t = Node.t node let equal x y = match x,y with | _,_ when x==y -> true | Cons (a,aa), Cons(b,bb) -> (aa==bb) && (H.equal a b) | _ -> false let hash = function | Nil -> 0 | Cons(a,aa) -> 17 + 65599 * (Uid.to_int (H.uid a)) + 491 * (Uid.to_int aa.Node.id) end type data = Data.t type t = Node.t let make = Node.make let node x = x.Node.node let hash x = x.Node.key let equal = Node.equal let uid x= x.Node.id let nil = Node.make Nil let stats = Node.stats let init = Node.init let is_nil = function { Node.node = Nil } -> true | _ -> false (* doing sorted insertion allows to make better use of hash consing *) let rec sorted_cons e l = match l.Node.node with | Nil -> Node.make (Cons(e, l)) | Cons (x, ll) -> if H.uid e < H.uid x then Node.make (Cons(e, l)) else Node.make (Cons(x, sorted_cons e ll)) let cons e l = Node.make(Cons(e, l)) let tip e = Node.make (Cons(e, nil)) (* let cons ?(sorted=true) e l = *) (* if sorted then sorted_cons e l else cons e l *) let hd = function { Node.node = Cons(a,_) } -> a | _ -> failwith "hd" let tl = function { Node.node = Cons(_,a) } -> a | _ -> failwith "tl" let fold f l acc = let rec loop acc l = match l.Node.node with | Nil -> acc | Cons (a, aa) -> loop (f a acc) aa in loop acc l let map f l = let rec loop l = match l.Node.node with | Nil -> l | Cons(a, aa) -> cons (f a) (loop aa) in loop l let smartmap f l = let rec loop l = match l.Node.node with | Nil -> l | Cons (a, aa) -> let a' = f a in if a' == a then let aa' = loop aa in if aa' == aa then l else cons a aa' else cons a' (loop aa) in loop l let iter f l = let rec loop l = match l.Node.node with | Nil -> () | Cons(a,aa) -> (f a);(loop aa) in loop l let exists f l = let rec loop l = match l.Node.node with | Nil -> false | Cons(a,aa) -> f a || loop aa in loop l let exists_remove f i = let rec loop l = match l.Node.node with | Nil -> l | Cons(a,aa) -> if f a then loop aa else let aa' = loop aa in if aa == aa' then l else cons a aa' in loop i let for_all f l = let rec loop l = match l.Node.node with | Nil -> true | Cons(a,aa) -> f a && loop aa in loop l let for_all2 f l l' = let rec loop l l' = match l.Node.node, l'.Node.node with | Nil, Nil -> true | Cons(a,aa), Cons(b,bb) -> f a b && loop aa bb | _, _ -> false in loop l l' let to_list l = let rec loop l = match l.Node.node with | Nil -> [] | Cons(a,aa) -> a :: loop aa in loop l let remove x l = let rec loop l = match l.Node.node with | Nil -> l | Cons(a,aa) -> if H.equal a x then aa else cons a (loop aa) in loop l let rev l = fold cons l nil let rev_map f l = fold (fun x acc -> cons (f x) acc) l nil let length l = fold (fun _ c -> c+1) l 0 let rec mem e l = match l.Node.node with | Nil -> false | Cons (x, ll) -> x == e || mem e ll let rec compare cmp l1 l2 = if l1 == l2 then 0 else let hl1 = hash l1 and hl2 = hash l2 in let c = Int.compare hl1 hl2 in if c == 0 then let nl1 = node l1 in let nl2 = node l2 in if nl1 == nl2 then 0 else match nl1, nl2 with | Nil, Nil -> assert false | _, Nil -> 1 | Nil, _ -> -1 | Cons (x1,l1), Cons(x2,l2) -> (match cmp x1 x2 with | 0 -> compare cmp l1 l2 | c -> c) else c end end end module type HashconsedHashedType = sig include Hashtbl.HashedType val hcons : t -> t end module type StaticHashHashedType = sig include HashconsedHashedType type data val make : data -> t val data : t -> data end module HashedHashcons (H : HashconsedHashedType) : StaticHashHashedType with type data = H.t = struct type data = H.t type t = { hash : int; data : data } let equal x y = Int.equal x.hash y.hash && H.equal x.data y.data let hash x = x.hash let hcons x = let data' = H.hcons x.data in if data' == x.data then x else { x with data = data' } let data x = x.data let make x = { hash = H.hash x; data = x } end module type S = sig type data type t = private { key : int; node : data } val make : data -> t val node : t -> data val hash : t -> int val equal : t -> t -> bool val stats : unit -> unit val init : unit -> unit end module MakeHashedHashcons (H : StaticHashHashedType) = struct module WH = Weak.Make(struct type t = H.t let hash = H.hash let equal a b = a == b || H.equal a b end) include H let pool = WH.create 4910 let make x = try WH.find pool x with | Not_found -> WH.add pool x; x let equal x y = x == y || H.equal x y end module Level = struct open Names type level = | Prop | Set | Level of int * DirPath.t (* Hash-consing *) let shallow_equal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> n == n' && d == d' | _ -> false let deep_equal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> Int.equal n n' && DirPath.equal d d' | _ -> false let hashcons = function | Prop as x -> x | Set as x -> x | Level (n,d) as x -> let d' = Names.DirPath.hcons d in if d' == d then x else Level (n,d') module LevelHashConsedType = struct type t = level let hcons = hashcons let equal = deep_equal (* Not shallow as serialization breaks sharing *) let hash = Hashtbl.hash end (* let hcons = Hashcons.simple_hcons Hunivlevel.generate Names.DirPath.hcons *) (** Embed levels with their hash value *) module Hunivlevel = HashedHashcons(LevelHashConsedType) (** Hashcons on levels + their hash *) module Hunivlevelhash = MakeHashedHashcons(Hunivlevel) include Hunivlevelhash let set = make (Hunivlevel.make Set) let prop = make (Hunivlevel.make Prop) let is_small x = match data x with | Level _ -> false | _ -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false (* A specialized comparison function: we compare the [int] part first. This way, most of the time, the [DirPath.t] part is not considered. Normally, placing the [int] first in the pair above in enough in Ocaml, but to be sure, we write below our own comparison function. Note: this property is used by the [check_sorted] function below. *) let deep_compare u v = match u, v with | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (i1, dp1), Level (i2, dp2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 let compare u v = if u == v then 0 else let c = Int.compare (hash u) (hash v) in if c == 0 then deep_compare (data u) (data v) else c let to_string x = match data x with | Prop -> "Prop" | Set -> "Set" | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n let pr u = str (to_string u) let apart u v = match data u, data v with | Prop, Set | Set, Prop -> true | _ -> false let make m n = make (Hunivlevel.make (Level (n, Names.DirPath.hcons m))) end let pr_universe_level_list l = prlist_with_sep spc Level.pr l module LSet = struct module M = Set.Make (Level) include M let pr s = str"{" ++ pr_universe_level_list (elements s) ++ str"}" let of_list l = List.fold_left (fun acc x -> add x acc) empty l let of_array l = Array.fold_left (fun acc x -> add x acc) empty l (* MS: Is this the best for sets? *) let hash = Hashtbl.hash end module LMap = struct module M = Map.Make (Level) include M let union l r = merge (fun k l r -> match l, r with | Some _, _ -> l | _, _ -> r) l r let subst_union l r = merge (fun k l r -> match l, r with | Some (Some _), _ -> l | Some None, None -> l | _, _ -> r) l r let diff ext orig = fold (fun u v acc -> if mem u orig then acc else add u v acc) ext empty let elements = bindings let of_set s d = LSet.fold (fun u -> add u d) s empty let of_list l = List.fold_left (fun m (u, v) -> add u v m) empty l let universes m = fold (fun u _ acc -> LSet.add u acc) m LSet.empty let pr f m = h 0 (prlist_with_sep fnl (fun (u, v) -> Level.pr u ++ f v) (elements m)) let find_opt t m = try Some (find t m) with Not_found -> None end type universe_level = Level.t module LList = struct type t = Level.t list type _t = t module Huniverse_level_list = Hashcons.Make( struct type t = _t type u = universe_level -> universe_level let hashcons huc s = List.fold_right (fun x a -> huc x :: a) s [] let equal s s' = List.for_all2eq (==) s s' let hash = Hashtbl.hash end) let hcons = Hashcons.simple_hcons Huniverse_level_list.generate Level.hcons let empty = hcons [] let equal l l' = l == l' || (try List.for_all2 Level.equal l l' with Invalid_argument _ -> false) let levels = List.fold_left (fun s x -> LSet.add x s) LSet.empty end type universe_level_list = universe_level list type universe_level_subst_fn = universe_level -> universe_level type universe_set = LSet.t type 'a universe_map = 'a LMap.t (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int type _t = t (* Hashing of expressions *) module ExprHash = struct type t = _t type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let equal l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module HExpr = struct include Hashcons.Make(ExprHash) type data = t type node = t let make = Hashcons.simple_hcons generate Level.hcons external node : node -> data = "%identity" let hash = ExprHash.hash let uid = hash let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let stats _ = () let init _ = () end let hcons = HExpr.make let make l = hcons (l, 0) let compare u v = if u == v then 0 else let (x, n) = u and (x', n') = v in if Int.equal n n' then Level.compare x x' else n - n' let prop = make Level.prop let set = make Level.set let type1 = hcons (Level.set, 1) let is_prop = function | (l,0) -> Level.is_prop l | _ -> false let is_set = function | (l,0) -> Level.is_set l | _ -> false let is_type1 = function | (l,1) -> Level.is_set l | _ -> false let is_small = function | (l, 0) -> Level.is_small l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && Level.is_small v) else false let successor (u,n) = if Level.is_prop u then type1 else hcons (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_prop u then hcons (Level.set,n+k) else hcons (u,n+k) let super (u,n as x) (v,n' as y) = let cmp = Level.compare u v in if Int.equal cmp 0 then if n < n' then Inl true else Inl false else if is_prop x then Inl true else if is_prop y then Inl false else Inr cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let is_level = function | (v, 0) -> true | _ -> false let level = function | (v,0) -> Some v | _ -> None let get_level (v,n) = v let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then hcons (Level.set, n) else hcons (v', n) end let compare_expr = Expr.compare let pr_expr n = Expr.pr n module Huniv = Hashconsing.HList.Make(Expr.HExpr) type t = Huniv.t open Huniv let equal x y = x == y || (Huniv.hash x == Huniv.hash y && Huniv.for_all2 Expr.equal x y) let hash = Huniv.hash let compare x y = if x == y then 0 else let hx = Huniv.hash x and hy = Huniv.hash y in let c = Int.compare hx hy in if c == 0 then Huniv.compare (fun e1 e2 -> compare_expr e1 e2) x y else c let hcons_unique = Huniv.make let hcons x = hcons_unique x let make l = Huniv.tip (Expr.make l) let tip x = Huniv.tip x let pr l = match node l with | Cons (u, n) when is_nil n -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr (to_list l)) ++ str ")" let atom l = match node l with | Cons (l, n) when is_nil n -> Some l | _ -> None let is_level l = match node l with | Cons (l, n) when is_nil n -> Expr.is_level l | _ -> false let level l = match node l with | Cons (l, n) when is_nil n -> Expr.level l | _ -> None let levels l = fold (fun x acc -> LSet.add (Expr.get_level x) acc) l LSet.empty let is_small u = match level u with | Some l -> Level.is_small l | _ -> false (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip (Expr.successor Expr.set) let is_type0m x = equal type0m x let is_type0 x = equal type0 x let is_type1 x = equal type1 x (* Returns the formal universe that lies juste above the universe variable u. Used to type the sort u. *) let super l = Huniv.map (fun x -> Expr.successor x) l let addn n l = Huniv.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match node l1, node l2 with | Nil, _ -> l2 | _, Nil -> l1 | Cons (h1, t1), Cons (h2, t2) -> (match Expr.super h1 h2 with | Inl true (* h1 < h2 *) -> merge_univs t1 l2 | Inl false -> merge_univs l1 t2 | Inr c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match node l with | Cons (b, l') -> (match Expr.super a b with | Inl false -> aux a l' | Inl true -> l | Inr c -> if c <= 0 then cons a l else cons b (aux a l')) | Nil -> cons a l in fold (fun a acc -> aux a acc) u nil (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let of_list l = List.fold_right (fun x acc -> cons x acc) l nil let empty = nil let is_empty n = is_nil n let exists = Huniv.exists let for_all = Huniv.for_all let smartmap = Huniv.smartmap end type universe = Universe.t open Universe (* type universe_list = UList.t *) (* let pr_universe_list = UList.pr *) let pr_uni = Universe.pr let is_small_univ = Universe.is_small let universe_level = Universe.level (* Comparison on this type is pointer equality *) type canonical_arc = { univ: Level.t; lt: Level.t list; le: Level.t list; rank : int} let terminal u = {univ=u; lt=[]; le=[]; rank=0} (* A Level.t is either an alias for another one, or a canonical one, for which we know the universes that are above *) type univ_entry = Canonical of canonical_arc | Equiv of Level.t type universes = univ_entry LMap.t let enter_equiv_arc u v g = LMap.add u (Equiv v) g let enter_arc ca g = LMap.add ca.univ (Canonical ca) g let is_type0m_univ = Universe.is_type0m (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let sup = Universe.sup let super = Universe.super let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None (* Every Level.t has a unique canonical arc representative *) (* repr : universes -> Level.t -> canonical_arc *) (* canonical representative : we follow the Equiv links *) let repr g u = let rec repr_rec u = let a = try LMap.find u g with Not_found -> anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined") in match a with | Equiv v -> repr_rec v | Canonical arc -> arc in repr_rec u let can g l = List.map (repr g) l (* [safe_repr] also search for the canonical representative, but if the graph doesn't contain the searched universe, we add it. *) let safe_repr g u = let rec safe_repr_rec u = match LMap.find u g with | Equiv v -> safe_repr_rec v | Canonical arc -> arc in try g, safe_repr_rec u with Not_found -> let can = terminal u in enter_arc can g, can (* reprleq : canonical_arc -> canonical_arc list *) (* All canonical arcv such that arcu<=arcv with arcv#arcu *) let reprleq g arcu = let rec searchrec w = function | [] -> w | v :: vl -> let arcv = repr g v in if List.memq arcv w || arcu==arcv then searchrec w vl else searchrec (arcv :: w) vl in searchrec [] arcu.le (* between : Level.t -> canonical_arc -> canonical_arc list *) (* between u v = { w | u<=w<=v, w canonical } *) (* between is the most costly operation *) let between g arcu arcv = (* good are all w | u <= w <= v *) (* bad are all w | u <= w ~<= v *) (* find good and bad nodes in {w | u <= w} *) (* explore b u = (b or "u is good") *) let rec explore ((good, bad, b) as input) arcu = if List.memq arcu good then (good, bad, true) (* b or true *) else if List.memq arcu bad then input (* (good, bad, b or false) *) else let leq = reprleq g arcu in (* is some universe >= u good ? *) let good, bad, b_leq = List.fold_left explore (good, bad, false) leq in if b_leq then arcu::good, bad, true (* b or true *) else good, arcu::bad, b (* b or false *) in let good,_,_ = explore ([arcv],[],false) arcu in good (* We assume compare(u,v) = LE with v canonical (see compare below). In this case List.hd(between g u v) = repr u Otherwise, between g u v = [] *) type constraint_type = Lt | Le | Eq type explanation = (constraint_type * universe) list let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (* Assuming the current universe has been reached by [p] and [l] correspond to the universes in (direct) relation [rel] with it, make a list of canonical universe, updating the relation with the starting point (path stored in reverse order). *) let canp g (p:explanation Lazy.t) rel l : (canonical_arc * explanation Lazy.t) list = List.map (fun u -> (repr g u, lazy ((rel,Universe.make u):: Lazy.force p))) l type order = EQ | LT of explanation Lazy.t | LE of explanation Lazy.t | NLE (** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ? In [strict] mode, we fully distinguish between LE and LT, while in non-strict mode, we simply answer LE for both situations. If [arcv] is encountered in a LT part, we could directly answer without visiting unneeded parts of this transitive closure. In [strict] mode, if [arcv] is encountered in a LE part, we could only change the default answer (1st arg [c]) from NLE to LE, since a strict constraint may appear later. During the recursive traversal, [lt_done] and [le_done] are universes we have already visited, they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)], two lists of universes not yet considered, known to be above [arcu], strictly or not. We use depth-first search, but the presence of [arcv] in [new_lt] is checked as soon as possible : this seems to be slightly faster on a test. *) let compare_neq strict g arcu arcv = (* [c] characterizes whether (and how) arcv has already been related to arcu among the lt_done,le_done universe *) let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with | [],[] -> c | (arc,p)::lt_todo, le_todo -> if List.memq arc lt_done then cmp c lt_done le_done lt_todo le_todo else let rec find lt_todo lt le = match le with | [] -> begin match lt with | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo | u :: lt -> let arc = repr g u in let p = lazy ((Lt, make u) :: Lazy.force p) in if arc == arcv then if strict then LT p else LE p else find ((arc, p) :: lt_todo) lt le end | u :: le -> let arc = repr g u in let p = lazy ((Le, make u) :: Lazy.force p) in if arc == arcv then if strict then LT p else LE p else find ((arc, p) :: lt_todo) lt le in find lt_todo arc.lt arc.le | [], (arc,p)::le_todo -> if arc == arcv then (* No need to continue inspecting universes above arc: if arcv is strictly above arc, then we would have a cycle. But we cannot answer LE yet, a stronger constraint may come later from [le_todo]. *) if strict then cmp (LE p) lt_done le_done [] le_todo else LE p else if (List.memq arc lt_done) || (List.memq arc le_done) then cmp c lt_done le_done [] le_todo else let rec find lt_todo lt = match lt with | [] -> let fold accu u = let p = lazy ((Le, make u) :: Lazy.force p) in let node = (repr g u, p) in node :: accu in let le_new = List.fold_left fold le_todo arc.le in cmp c lt_done (arc :: le_done) lt_todo le_new | u :: lt -> let arc = repr g u in let p = lazy ((Lt, make u) :: Lazy.force p) in if arc == arcv then if strict then LT p else LE p else find ((arc, p) :: lt_todo) lt in find [] arc.lt in cmp NLE [] [] [] [(arcu,Lazy.lazy_from_val [])] type fast_order = FastEQ | FastLT | FastLE | FastNLE let fast_compare_neq strict g arcu arcv = (* [c] characterizes whether arcv has already been related to arcu among the lt_done,le_done universe *) let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with | [],[] -> c | arc::lt_todo, le_todo -> if List.memq arc lt_done then cmp c lt_done le_done lt_todo le_todo else let rec find lt_todo lt le = match le with | [] -> begin match lt with | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le end | u :: le -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le in find lt_todo arc.lt arc.le | [], arc::le_todo -> if arc == arcv then (* No need to continue inspecting universes above arc: if arcv is strictly above arc, then we would have a cycle. But we cannot answer LE yet, a stronger constraint may come later from [le_todo]. *) if strict then cmp FastLE lt_done le_done [] le_todo else FastLE else if (List.memq arc lt_done) || (List.memq arc le_done) then cmp c lt_done le_done [] le_todo else let rec find lt_todo lt = match lt with | [] -> let fold accu u = let node = repr g u in node :: accu in let le_new = List.fold_left fold le_todo arc.le in cmp c lt_done (arc :: le_done) lt_todo le_new | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt in find [] arc.lt in cmp FastNLE [] [] [] [arcu] let compare g arcu arcv = if arcu == arcv then EQ else compare_neq true g arcu arcv let fast_compare g arcu arcv = if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv let is_leq g arcu arcv = arcu == arcv || (match fast_compare_neq false g arcu arcv with | FastNLE -> false | (FastEQ|FastLE|FastLT) -> true) let is_lt g arcu arcv = if arcu == arcv then false else match fast_compare_neq true g arcu arcv with | FastLT -> true | (FastEQ|FastLE|FastNLE) -> false (* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ compare(u,v) = LT or LE => compare(v,u) = NLE compare(u,v) = NLE => compare(v,u) = NLE or LE or LT Adding u>=v is consistent iff compare(v,u) # LT and then it is redundant iff compare(u,v) # NLE Adding u>v is consistent iff compare(v,u) = NLE and then it is redundant iff compare(u,v) = LT *) (** * Universe checks [check_eq] and [check_leq], used in coqchk *) (** First, checks on universe levels *) let check_equal g u v = let g, arcu = safe_repr g u in let _, arcv = safe_repr g v in arcu == arcv let set_arc g = snd (safe_repr g Level.set) let prop_arc g = snd (safe_repr g Level.prop) let check_smaller g strict u v = let g, arcu = safe_repr g u in let g, arcv = safe_repr g v in if strict then is_lt g arcu arcv else let proparc = prop_arc g in arcu == proparc || ((arcv != proparc && arcu == set_arc g) || is_leq g arcu arcv) (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_equal_expr g x y = x == y || (let (u, n) = x and (v, m) = y in Int.equal n m && check_equal g u v) exception Neq let check_eq_univs g l1 l2 = let f x1 x2 = check_equal_expr g x1 x2 in let exists x1 l = Huniv.exists (fun x2 -> f x1 x2) l in Huniv.for_all (fun x1 -> exists x1 l2) l1 && Huniv.for_all (fun x2 -> exists x2 l1) l2 (** [check_eq] is also used in [Evd.set_eq_sort], hence [Evarconv] and [Unification]. In this case, it seems that the Atom/Max case may occur, hence a relaxed version. *) let check_eq g u v = Universe.equal u v || check_eq_univs g u v let check_eq_level g u v = u == v || check_equal g u v let check_eq = if Flags.profile then let check_eq_key = Profile.declare_profile "check_eq" in Profile.profile3 check_eq_key check_eq else check_eq let lax_check_eq = check_eq let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Huniv.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = (* prerr_endline ("Real check leq" ^ (string_of_ppcmds *) (* (Universe.pr u ++ str" " ++ Universe.pr v))); *) Huniv.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || Universe.is_type0m u || check_eq_univs g u v || real_check_leq g u v let check_leq = if Flags.profile then let check_leq_key = Profile.declare_profile "check_leq" in Profile.profile3 check_leq_key check_leq else check_leq (** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *) (* setlt : Level.t -> Level.t -> reason -> unit *) (* forces u > v *) (* this is normally an update of u in g rather than a creation. *) let setlt g arcu arcv = let arcu' = {arcu with lt=arcv.univ::arcu.lt} in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setlt_if (g,arcu) v = let arcv = repr g v in if is_lt g arcu arcv then g, arcu else setlt g arcu arcv (* setleq : Level.t -> Level.t -> unit *) (* forces u >= v *) (* this is normally an update of u in g rather than a creation. *) let setleq g arcu arcv = let arcu' = {arcu with le=arcv.univ::arcu.le} in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setleq_if (g,arcu) v = let arcv = repr g v in if is_leq g arcu arcv then g, arcu else setleq g arcu arcv (* merge : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = LE *) (* merge u v forces u ~ v with repr u as canonical repr *) let merge g arcu arcv = (* we find the arc with the biggest rank, and we redirect all others to it *) let arcu, g, v = let best_ranked (max_rank, old_max_rank, best_arc, rest) arc = if Level.is_small arc.univ || arc.rank >= max_rank then (arc.rank, max_rank, arc, best_arc::rest) else (max_rank, old_max_rank, best_arc, arc::rest) in match between g arcu arcv with | [] -> anomaly (str "Univ.between") | arc::rest -> let (max_rank, old_max_rank, best_arc, rest) = List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in if max_rank > old_max_rank then best_arc, g, rest else begin (* one redirected node also has max_rank *) let arcu = {best_arc with rank = max_rank + 1} in arcu, enter_arc arcu g, rest end in let redirect (g,w,w') arcv = let g' = enter_equiv_arc arcv.univ arcu.univ g in (g',List.unionq arcv.lt w,arcv.le@w') in let (g',w,w') = List.fold_left redirect (g,[],[]) v in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu w in let g_arcu = List.fold_left setleq_if g_arcu w' in fst g_arcu (* merge_disc : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = compare(v,u) = NLE *) (* merge_disc u v forces u ~ v with repr u as canonical repr *) let merge_disc g arc1 arc2 = let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in let arcu, g = if not (Int.equal arc1.rank arc2.rank) then arcu, g else let arcu = {arcu with rank = succ arcu.rank} in arcu, enter_arc arcu g in let g' = enter_equiv_arc arcv.univ arcu.univ g in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in let g_arcu = List.fold_left setleq_if g_arcu arcv.le in fst g_arcu (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe * explanation exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v (p:explanation) = raise (UniverseInconsistency (o,make u,make v,p)) (* enforc_univ_eq : Level.t -> Level.t -> unit *) (* enforc_univ_eq u v will force u=v if possible, will fail otherwise *) let enforce_univ_eq u v g = let g,arcu = safe_repr g u in let g,arcv = safe_repr g v in match fast_compare g arcu arcv with | FastEQ -> g | FastLT -> (match compare g arcu arcv with | LT p -> error_inconsistency Eq v u (List.rev (Lazy.force p)) | _ -> anomaly (Pp.str "Univ.fast_compare")) | FastLE -> merge g arcu arcv | FastNLE -> (match fast_compare g arcv arcu with | FastLT -> (match compare g arcv arcu with | LT p -> error_inconsistency Eq u v (List.rev (Lazy.force p)) | _ -> anomaly (Pp.str "Univ.fast_compare")) | FastLE -> merge g arcv arcu | FastNLE -> merge_disc g arcu arcv | FastEQ -> anomaly (Pp.str "Univ.compare")) (* enforce_univ_leq : Level.t -> Level.t -> unit *) (* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let g,arcu = safe_repr g u in let g,arcv = safe_repr g v in if is_leq g arcu arcv then g else match fast_compare g arcv arcu with | FastLT -> (match compare g arcv arcu with | LT p -> error_inconsistency Le u v (List.rev (Lazy.force p)) | _ -> anomaly (Pp.str "Univ.fast_compare")) | FastLE -> merge g arcv arcu | FastNLE -> fst (setleq g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare") (* enforce_univ_lt u v will force u g | FastLE -> fst (setlt g arcu arcv) | FastEQ -> (match compare g arcu arcv with | EQ -> error_inconsistency Lt u v [(Eq,make v)] | _ -> anomaly (Pp.str "Univ.fast_compare")) | FastNLE -> match fast_compare_neq false g arcv arcu with FastNLE -> fst (setlt g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare") | (FastLE|FastLT) -> (match compare_neq false g arcv arcu with | LE p | LT p -> error_inconsistency Lt u v (List.rev (Lazy.force p)) | _ -> anomaly (Pp.str "Univ.fast_compare")) let empty_universes = LMap.empty (* Prop = Set is forbidden here. *) let initial_universes = enforce_univ_lt Level.prop Level.set LMap.empty let is_initial_universes g = LMap.equal (==) g initial_universes (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr c = fold (fun (u1,op,u2) pp_std -> pp_std ++ Level.pr u1 ++ pr_constraint_type op ++ Level.pr u2 ++ fnl () ) c (str "") end let empty_constraint = Constraint.empty let is_empty_constraint = Constraint.is_empty let union_constraint = Constraint.union let eq_constraint = Constraint.equal type constraints = Constraint.t module Hconstraint = Hashcons.Make( struct type t = univ_constraint type u = universe_level -> universe_level let hashcons hul (l1,k,l2) = (hul l1, k, hul l2) let equal (l1,k,l2) (l1',k',l2') = l1 == l1' && k == k' && l2 == l2' let hash = Hashtbl.hash end) module Hconstraints = Hashcons.Make( struct type t = constraints type u = univ_constraint -> univ_constraint let hashcons huc s = Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty let equal s s' = List.for_all2eq (==) (Constraint.elements s) (Constraint.elements s') let hash = Hashtbl.hash end) let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Level.hcons let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate hcons_constraint type universe_constraint_type = ULe | UEq | ULub type universe_constraint = universe * universe_constraint_type * universe module UniverseConstraints = struct module S = Set.Make( struct type t = universe_constraint let compare_type c c' = match c, c' with | ULe, ULe -> 0 | ULe, _ -> -1 | _, ULe -> 1 | UEq, UEq -> 0 | UEq, _ -> -1 | ULub, ULub -> 0 | ULub, _ -> 1 let compare (u,c,v) (u',c',v') = let i = compare_type c c' in if Int.equal i 0 then let i' = Universe.compare u u' in if Int.equal i' 0 then Universe.compare v v' else if c != ULe && Universe.compare u v' = 0 && Universe.compare v u' = 0 then 0 else i' else i end) include S let add (l,d,r as cst) s = if (Option.is_empty (Universe.level r)) then prerr_endline "Algebraic universe on the right"; if Universe.equal l r then s else add cst s let tr_dir = function | ULe -> Le | UEq -> Eq | ULub -> Eq let op_str = function ULe -> " <= " | UEq -> " = " | ULub -> " /\\ " let pr c = fold (fun (u1,op,u2) pp_std -> pp_std ++ Universe.pr u1 ++ str (op_str op) ++ Universe.pr u2 ++ fnl ()) c (str "") let equal x y = x == y || equal x y end type universe_constraints = UniverseConstraints.t type 'a universe_constrained = 'a * universe_constraints (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l module Instance : sig type t val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val of_list : Level.t list -> t val to_list : t -> Level.t list val append : t -> t -> t val equal : t -> t -> bool val hcons : t -> t val hash : t -> int val share : t -> t * int val eqeq : t -> t -> bool val subst_fn : universe_level_subst_fn -> t -> t val subst : universe_level_subst -> t -> t val pr : t -> Pp.std_ppcmds val levels : t -> LSet.t val check_eq : t check_function end = struct type t = Level.t array let empty : t = [||] module HInstancestruct = struct type _t = t type t = _t type u = Level.t -> Level.t let hashcons huniv a = let len = Array.length a in if Int.equal len 0 then empty else begin for i = 0 to len - 1 do let x = Array.unsafe_get a i in let x' = huniv x in if x == x' then () else Array.unsafe_set a i x' done; a end let equal t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hash a = let accu = ref 0 in for i = 0 to Array.length a - 1 do let l = Array.unsafe_get a i in let h = Level.hash l in accu := Hashset.Combine.combine !accu h; done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in h end module HInstance = Hashcons.Make(HInstancestruct) let hcons = Hashcons.simple_hcons HInstance.generate Level.hcons let hash = HInstancestruct.hash let share a = (a, hash a) (* let len = Array.length a in *) (* if Int.equal len 0 then (empty, 0) *) (* else begin *) (* let accu = ref 0 in *) (* for i = 0 to len - 1 do *) (* let l = Array.unsafe_get a i in *) (* let l', h = Level.hcons l, Level.hash l in *) (* accu := Hashset.Combine.combine !accu h; *) (* if l' == l then () *) (* else Array.unsafe_set a i l' *) (* done; *) (* (\* [h] must be positive. *\) *) (* let h = !accu land 0x3FFFFFFF in *) (* (a, h) *) (* end *) let empty = hcons [||] let is_empty x = Int.equal (Array.length x) 0 let append x y = if Array.length x = 0 then y else if Array.length y = 0 then x else hcons (Array.append x y) let of_array a = hcons a let to_array a = a let of_list a = of_array (Array.of_list a) let to_list = Array.to_list let eqeq = HInstancestruct.equal let subst_fn fn t = let t' = CArray.smartmap fn t in if t' == t then t else hcons t' let subst s t = let t' = CArray.smartmap (fun x -> try LMap.find x s with Not_found -> x) t in if t' == t then t else hcons t' let levels x = LSet.of_array x let pr = prvect_with_sep spc Level.pr let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) (* if b then *) (* (prerr_endline ("Not physically equal but equal:" ^(Pp.string_of_ppcmds (pr t)) *) (* ^ " and " ^ (Pp.string_of_ppcmds (pr u))); b) *) (* else b) *) let check_eq g t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) end type universe_instance = Instance.t type 'a puniverses = 'a * Instance.t let out_punivs (x, y) = x let in_punivs x = (x, Instance.empty) (** A context of universe levels with universe constraints, representiong local universe variables and constraints *) module UContext = struct type t = Instance.t constrained let make x = x (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr (univs, cst as ctx) = if is_empty ctx then mt() else Instance.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst) let hcons (univs, cst) = (Instance.hcons univs, hcons_constraints cst) let instance (univs, cst) = univs let constraints (univs, cst) = cst let union (univs, cst) (univs', cst') = Instance.append univs univs', Constraint.union cst cst' end type universe_context = UContext.t let hcons_universe_context = UContext.hcons (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet = struct type t = universe_set constrained let empty = (LSet.empty, Constraint.empty) let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst let of_context (ctx,cst) = (Instance.levels ctx, cst) let of_set s = (s, Constraint.empty) let singleton l = of_set (LSet.singleton l) let of_instance i = of_set (Instance.levels i) let union (univs, cst) (univs', cst') = LSet.union univs univs', Constraint.union cst cst' let diff (univs, cst) (univs', cst') = LSet.diff univs univs', Constraint.diff cst cst' let add_constraints (univs, cst) cst' = univs, Constraint.union cst cst' let add_universes univs ctx = union (of_instance univs) ctx let to_context (ctx, cst) = (Instance.of_array (Array.of_list (LSet.elements ctx)), cst) let of_context (ctx, cst) = (Instance.levels ctx, cst) let pr (univs, cst as ctx) = if is_empty ctx then mt() else LSet.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst) let constraints (univs, cst) = cst let levels (univs, cst) = univs end type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set (** Pretty-printing *) let pr_constraints = Constraint.pr let pr_universe_context = UContext.pr let pr_universe_context_set = ContextSet.pr let pr_universe_subst = LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ()) let pr_universe_level_subst = LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ()) let constraints_of (_, cst) = cst let constraint_depend (l,d,r) u = Level.equal l u || Level.equal l r let constraint_depend_list (l,d,r) us = List.mem l us || List.mem r us let constraints_depend cstr us = Constraint.exists (fun c -> constraint_depend_list c us) cstr let remove_dangling_constraints dangling cst = Constraint.fold (fun (l,d,r as cstr) cst' -> if List.mem l dangling || List.mem r dangling then cst' else (** Unnecessary constraints Prop <= u *) if Level.equal l Level.prop && d == Le then cst' else Constraint.add cstr cst') cst Constraint.empty let check_context_subset (univs, cst) (univs', cst') = let newunivs, dangling = List.partition (fun u -> LSet.mem u univs) (Instance.to_list univs') in (* Some universe variables that don't appear in the term are still mentionned in the constraints. This is the case for "fake" universe variables that correspond to +1s. *) (* if not (CList.is_empty dangling) then *) (* todo ("A non-empty set of inferred universes do not appear in the term or type"); *) (* (not (constraints_depend cst' dangling));*) (* TODO: check implication *) (** Remove local universes that do not appear in any constraint, they are really entirely parametric. *) (* let newunivs, dangling' = List.partition (fun u -> constraints_depend cst [u]) newunivs in *) let cst' = remove_dangling_constraints dangling cst in Instance.of_list newunivs, cst' (** Substitutions. *) let make_universe_subst inst (ctx, csts) = try Array.fold_left2 (fun acc c i -> LMap.add c (Universe.make i) acc) LMap.empty (Instance.to_array ctx) (Instance.to_array inst) with Invalid_argument _ -> anomaly (Pp.str "Mismatched instance and context when building universe substitution") let empty_subst = LMap.empty let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let rec normalize_univs_level_level subst l = try let l' = LMap.find l subst in normalize_univs_level_level subst l' with Not_found -> l let subst_univs_level_fail subst l = try match Universe.level (subst l) with | Some l' -> l' | None -> l with Not_found -> l let rec subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let subst_univs_level_constraint subst (u,d,v) = let u' = subst_univs_level_level subst u and v' = subst_univs_level_level subst v in if d != Lt && Level.equal u' v' then None else Some (u',d,v') let subst_univs_level_constraints subst csts = Constraint.fold (fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c)) csts Constraint.empty (* let subst_univs_level_constraint_key = Profile.declare_profile "subst_univs_level_constraint";; *) (* let subst_univs_level_constraint = *) (* Profile.profile2 subst_univs_level_constraint_key subst_univs_level_constraint *) (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_level fn l = try fn l with Not_found -> make l let subst_univs_expr_opt fn (l,n) = try Some (Universe.addn n (fn l)) with Not_found -> None let subst_univs_universe fn ul = let subst, nosubst = Universe.Huniv.fold (fun u (subst,nosubst) -> match subst_univs_expr_opt fn u with | Some a' -> (a' :: subst, nosubst) | None -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u)) substs nosubst let subst_univs_constraint fn (u,d,v) = let u' = subst_univs_level fn u and v' = subst_univs_level fn v in if d != Lt && Universe.equal u' v' then None else Some (u',d,v') let subst_univs_universe_constraint fn (u,d,v) = let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in if Universe.equal u' v' then None else Some (u',d,v') (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then if Level.equal x y then (* u+(k+1) <= u *) raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, [])) else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints") let check_univ_eq u v = Universe.equal u v let check_univ_leq_one u v = Universe.exists (Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = match Huniv.node v with | Universe.Huniv.Cons (v, n) when Universe.is_empty n -> Universe.Huniv.fold (fun u -> constraint_add_leq u v) u c | _ -> anomaly (Pp.str"A universe bound can only be a variable") let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let enforce_eq_level u v c = (* We discard trivial constraints like u=u *) if Level.equal u v then c else if Level.apart u v then error_inconsistency Eq u v [] else Constraint.add (u,Eq,v) c let enforce_eq u v c = match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> anomaly (Pp.str "A universe comparison can only happen between variables") let enforce_eq u v c = if check_univ_eq u v then c else enforce_eq u v c let enforce_leq_level u v c = if Level.equal u v then c else Constraint.add (u,Le,v) c let enforce_eq_instances x y = let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then anomaly (Pp.str "Invalid argument: enforce_eq_instances called with instances of different lengths"); CArray.fold_right2 enforce_eq_level ax ay type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints let enforce_eq_instances_univs strict x y c = let d = if strict then ULub else UEq in let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with instances of different lengths"); CArray.fold_right2 (fun x y -> UniverseConstraints.add (Universe.make x, d, Universe.make y)) ax ay c let merge_constraints c g = Constraint.fold enforce_constraint c g let merge_constraints = if Flags.profile then let key = Profile.declare_profile "merge_constraints" in Profile.profile2 key merge_constraints else merge_constraints let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c let check_constraints = if Flags.profile then let key = Profile.declare_profile "check_constraints" in Profile.profile2 key check_constraints else check_constraints let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (super u) v let subst_univs_constraints subst csts = Constraint.fold (fun c -> Option.fold_right enforce_univ_constraint (subst_univs_constraint subst c)) csts Constraint.empty (* let subst_univs_constraints_key = Profile.declare_profile "subst_univs_constraints";; *) (* let subst_univs_constraints = *) (* Profile.profile2 subst_univs_constraints_key subst_univs_constraints *) let subst_univs_universe_constraints subst csts = UniverseConstraints.fold (fun c -> Option.fold_right UniverseConstraints.add (subst_univs_universe_constraint subst c)) csts UniverseConstraints.empty (* let subst_univs_universe_constraints_key = Profile.declare_profile "subst_univs_universe_constraints";; *) (* let subst_univs_universe_constraints = *) (* Profile.profile2 subst_univs_universe_constraints_key subst_univs_universe_constraints *) (** Substitute instance inst for ctx in csts *) let instantiate_univ_context subst (_, csts) = subst_univs_constraints (make_subst subst) csts let check_consistent_constraints (ctx,cstrs) cstrs' = (* TODO *) () let to_constraints g s = let rec tr (x,d,y) acc = let add l d l' acc = Constraint.add (l,UniverseConstraints.tr_dir d,l') acc in match Universe.level x, d, Universe.level y with | Some l, (ULe | UEq | ULub), Some l' -> add l d l' acc | _, ULe, Some l' -> enforce_leq x y acc | _, ULub, _ -> acc | _, d, _ -> let f = if d == ULe then check_leq else check_eq in if f g x y then acc else raise (Invalid_argument "to_constraints: non-trivial algebraic constraint between universes") in UniverseConstraints.fold tr s Constraint.empty (* Normalization *) let lookup_level u g = try Some (LMap.find u g) with Not_found -> None (** [normalize_universes g] returns a graph where all edges point directly to the canonical representent of their target. The output graph should be equivalent to the input graph from a logical point of view, but optimized. We maintain the invariant that the key of a [Canonical] element is its own name, by keeping [Equiv] edges (see the assertion)... I (Stéphane Glondu) am not sure if this plays a role in the rest of the module. *) let normalize_universes g = let rec visit u arc cache = match lookup_level u cache with | Some x -> x, cache | None -> match Lazy.force arc with | None -> u, LMap.add u u cache | Some (Canonical {univ=v; lt=_; le=_}) -> v, LMap.add u v cache | Some (Equiv v) -> let v, cache = visit v (lazy (lookup_level v g)) cache in v, LMap.add u v cache in let cache = LMap.fold (fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache)) g LMap.empty in let repr x = LMap.find x cache in let lrepr us = List.fold_left (fun e x -> LSet.add (repr x) e) LSet.empty us in let canonicalize u = function | Equiv _ -> Equiv (repr u) | Canonical {univ=v; lt=lt; le=le; rank=rank} -> assert (u == v); (* avoid duplicates and self-loops *) let lt = lrepr lt and le = lrepr le in let le = LSet.filter (fun x -> x != u && not (LSet.mem x lt)) le in LSet.iter (fun x -> assert (x != u)) lt; Canonical { univ = v; lt = LSet.elements lt; le = LSet.elements le; rank = rank; } in LMap.mapi canonicalize g (** [check_sorted g sorted]: [g] being a universe graph, [sorted] being a map to levels, checks that all constraints in [g] are satisfied in [sorted]. *) let check_sorted g sorted = let get u = try LMap.find u sorted with | Not_found -> assert false in let iter u arc = let lu = get u in match arc with | Equiv v -> assert (Int.equal lu (get v)) | Canonical {univ = u'; lt = lt; le = le} -> assert (u == u'); List.iter (fun v -> assert (lu <= get v)) le; List.iter (fun v -> assert (lu < get v)) lt in LMap.iter iter g (** Longest path algorithm. This is used to compute the minimal number of universes required if the only strict edge would be the Lt one. This algorithm assumes that the given universes constraints are a almost DAG, in the sense that there may be {Eq, Le}-cycles. This is OK for consistent universes, which is the only case where we use this algorithm. *) (** Adjacency graph *) type graph = constraint_type LMap.t LMap.t exception Connected (** Check connectedness *) let connected x y (g : graph) = let rec connected x target seen g = if Level.equal x target then raise Connected else if not (LSet.mem x seen) then let seen = LSet.add x seen in let fold z _ seen = connected z target seen g in let neighbours = try LMap.find x g with Not_found -> LMap.empty in LMap.fold fold neighbours seen else seen in try ignore(connected x y LSet.empty g); false with Connected -> true let add_edge x y v (g : graph) = try let neighbours = LMap.find x g in let () = assert (not (LMap.mem y neighbours)) in let neighbours = LMap.add y v neighbours in LMap.add x neighbours g with Not_found -> LMap.add x (LMap.singleton y v) g (** We want to keep the graph DAG. If adding an edge would cause a cycle, that would necessarily be an {Eq, Le}-cycle, otherwise there would have been a universe inconsistency. Therefore we may omit adding such a cycling edge without changing the compacted graph. *) let add_eq_edge x y v g = if connected y x g then g else add_edge x y v g (** Construct the DAG and its inverse at the same time. *) let make_graph g : (graph * graph) = let fold u arc accu = match arc with | Equiv v -> let (dir, rev) = accu in (add_eq_edge u v Eq dir, add_eq_edge v u Eq rev) | Canonical { univ; lt; le; } -> let () = assert (u == univ) in let fold_lt (dir, rev) v = (add_edge u v Lt dir, add_edge v u Lt rev) in let fold_le (dir, rev) v = (add_eq_edge u v Le dir, add_eq_edge v u Le rev) in let accu = List.fold_left fold_lt accu lt in let accu = List.fold_left fold_le accu le in accu in LMap.fold fold g (LMap.empty, LMap.empty) (** Construct a topological order out of a DAG. *) let rec topological_fold u g rem seen accu = let is_seen = try let status = LMap.find u seen in assert status; (** If false, not a DAG! *) true with Not_found -> false in if not is_seen then let rem = LMap.remove u rem in let seen = LMap.add u false seen in let neighbours = try LMap.find u g with Not_found -> LMap.empty in let fold v _ (rem, seen, accu) = topological_fold v g rem seen accu in let (rem, seen, accu) = LMap.fold fold neighbours (rem, seen, accu) in (rem, LMap.add u true seen, u :: accu) else (rem, seen, accu) let rec topological g rem seen accu = let node = try Some (LMap.choose rem) with Not_found -> None in match node with | None -> accu | Some (u, _) -> let rem, seen, accu = topological_fold u g rem seen accu in topological g rem seen accu (** Compute the longest path from any vertex. *) let constraint_cost = function | Eq | Le -> 0 | Lt -> 1 (** This algorithm browses the graph in topological order, computing for each encountered node the length of the longest path leading to it. Should be O(|V|) or so (modulo map representation). *) let rec flatten_graph rem (rev : graph) map mx = match rem with | [] -> map, mx | u :: rem -> let prev = try LMap.find u rev with Not_found -> LMap.empty in let fold v cstr accu = let v_cost = LMap.find v map in max (v_cost + constraint_cost cstr) accu in let u_cost = LMap.fold fold prev 0 in let map = LMap.add u u_cost map in flatten_graph rem rev map (max mx u_cost) (** [sort_universes g] builds a map from universes in [g] to natural numbers. It outputs a graph containing equivalence edges from each level appearing in [g] to [Type.n], and [lt] edges between the [Type.n]s. The output graph should imply the input graph (and the [Type.n]s. The output graph should imply the input graph (and the implication will be strict most of the time), but is not necessarily minimal. Note: the result is unspecified if the input graph already contains [Type.n] nodes (calling a module Type is probably a bad idea anyway). *) let sort_universes orig = let (dir, rev) = make_graph orig in let order = topological dir dir LMap.empty [] in let compact, max = flatten_graph order rev LMap.empty 0 in let mp = Names.DirPath.make [Names.Id.of_string "Type"] in let types = Array.init (max + 1) (fun n -> Level.make mp n) in (** Old universes are made equal to [Type.n] *) let fold u level accu = LMap.add u (Equiv types.(level)) accu in let sorted = LMap.fold fold compact LMap.empty in (** Add all [Type.n] nodes *) let fold i accu u = if 0 < i then let pred = types.(i - 1) in let arc = {univ = u; lt = [pred]; le = []; rank = 0} in LMap.add u (Canonical arc) accu else accu in Array.fold_left_i fold sorted types (**********************************************************************) (* Tools for sort-polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) let remove_large_constraint u v min = match Universe.level v with | Some u' -> if Level.equal u u' then min else v | None -> Huniv.remove (Universe.Expr.make u) v (* [is_direct_constraint u v] if level [u] is a member of universe [v] *) let is_direct_constraint u v = match Universe.level v with | Some u' -> Level.equal u u' | None -> let expr = Universe.Expr.make u in Universe.exists (Universe.Expr.equal expr) v (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> is_direct_constraint u v | None -> false let solve_constraints_system levels level_bounds level_min = let levels = Array.map (Option.map (fun u -> match level u with Some u -> u | _ -> anomaly (Pp.str"expects Atom"))) levels in let v = Array.copy level_bounds in let nind = Array.length v in for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j); level_min.(i) <- Universe.sup level_min.(i) level_min.(j)) done; for j=0 to nind-1 do match levels.(j) with | Some u -> v.(i) <- remove_large_constraint u v.(i) level_min.(i) | None -> () done done; v let subst_large_constraint u u' v = match level u with | Some u -> (* if is_direct_constraint u v then *) Universe.sup u' (remove_large_constraint u v type0m_univ) (* else v *) | _ -> anomaly (Pp.str "expect a universe level") let subst_large_constraints = List.fold_right (fun (u,u') -> subst_large_constraint u u') let no_upper_constraints u cst = match level u with | Some u -> let test (u1, _, _) = not (Int.equal (Level.compare u1 u) 0) in Constraint.for_all test cst | _ -> anomaly (Pp.str "no_upper_constraints") (* Is u mentionned in v (or equals to v) ? *) let univ_depends u v = match atom u with | Some u -> Huniv.mem u v | _ -> anomaly (Pp.str"univ_depends given a non-atomic 1st arg") let constraints_of_universes g = let constraints_of u v acc = match v with | Canonical {univ=u; lt=lt; le=le} -> let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in acc | Equiv v -> Constraint.add (u,Eq,v) acc in LMap.fold constraints_of g Constraint.empty (* Pretty-printing *) let pr_arc = function | _, Canonical {univ=u; lt=[]; le=[]} -> mt () | _, Canonical {univ=u; lt=lt; le=le} -> let opt_sep = match lt, le with | [], _ | _, [] -> mt () | _ -> spc () in Level.pr u ++ str " " ++ v 0 (pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++ opt_sep ++ pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++ fnl () | u, Equiv v -> Level.pr u ++ str " = " ++ Level.pr v ++ fnl () let pr_universes g = let graph = LMap.fold (fun u a l -> (u,a)::l) g [] in prlist pr_arc graph (* Dumping constraints to a file *) let dump_universes output g = let dump_arc u = function | Canonical {univ=u; lt=lt; le=le} -> let u_str = Level.to_string u in List.iter (fun v -> output Lt u_str (Level.to_string v)) lt; List.iter (fun v -> output Le u_str (Level.to_string v)) le | Equiv v -> output Eq (Level.to_string u) (Level.to_string v) in LMap.iter dump_arc g module Huniverse_set = Hashcons.Make( struct type t = universe_set type u = universe_level -> universe_level let hashcons huc s = LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty let equal s s' = LSet.equal s s' let hash = Hashtbl.hash end) let hcons_universe_set = Hashcons.simple_hcons Huniverse_set.generate Level.hcons let hcons_universe_context_set (v, c) = (hcons_universe_set v, hcons_constraints c) let hcons_univ x = Universe.hcons (Huniv.node x) let explain_universe_inconsistency (o,u,v,p) = let pr_rel = function | Eq -> str"=" | Lt -> str"<" | Le -> str"<=" in let reason = match p with [] -> mt() | _::_ -> str " because" ++ spc() ++ pr_uni v ++ prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ pr_uni v) p ++ (if Universe.equal (snd (List.last p)) u then mt() else (spc() ++ str "= " ++ pr_uni u)) in str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++ pr_rel o ++ spc() ++ pr_uni v ++ reason ++ str")" let compare_levels = Level.compare let eq_levels = Level.equal let equal_universes = Universe.equal