(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* true | Prop, Prop -> true | Set, Set -> true | Level l, Level l' -> UGlobal.equal l l' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | SProp, SProp -> 0 | SProp, _ -> -1 | _, SProp -> 1 | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level l1, Level l2 -> UGlobal.compare l1 l2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m let hequal x y = x == y || match x, y with | SProp, SProp -> true | Prop, Prop -> true | Set, Set -> true | Level (d,s,n), Level (d',s',n') -> n == n' && s==s' && d == d' | Var n, Var n' -> n == n' | _ -> false let hcons = function | SProp as x -> x | Prop as x -> x | Set as x -> x | Level (d,s,n) as x -> let s' = CString.hcons s in let d' = Names.DirPath.hcons d in if s' == s && d' == d then x else Level (d',s',n) | Var _n as x -> x open Hashset.Combine let hash = function | SProp -> combinesmall 1 0 | Prop -> combinesmall 1 1 | Set -> combinesmall 1 2 | Var n -> combinesmall 2 n | Level l -> combinesmall 3 (UGlobal.hash l) end module Level = struct module UGlobal = RawLevel.UGlobal type raw_level = RawLevel.t = | SProp | Prop | Set | Level of UGlobal.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data (** Hashcons on levels + their hash *) module Self = struct type nonrec t = t type u = unit let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data let hash x = x.hash let hashcons () x = let data' = RawLevel.hcons x.data in if x.data == data' then x else { x with data = data' } end let hcons = let module H = Hashcons.Make(Self) in Hashcons.simple_hcons H.generate H.hcons () let make l = hcons { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let sprop = make SProp let is_small x = match data x with | Level _ -> false | Var _ -> false | SProp -> true | Prop -> true | Set -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let is_sprop x = match data x with | SProp -> true | _ -> false let compare u v = if u == v then 0 else RawLevel.compare (data u) (data v) let to_string x = match data x with | SProp -> "SProp" | Prop -> "Prop" | Set -> "Set" | Level (d,s,n) -> Names.DirPath.to_string d ^ (if CString.is_empty s then "" else "." ^ s) ^ "." ^ string_of_int n | Var n -> "Var(" ^ string_of_int n ^ ")" let pr u = str (to_string u) let vars = Array.init 20 (fun i -> make (Var i)) let var n = if n < 20 then vars.(n) else make (Var n) let var_index u = match data u with | Var n -> Some n | _ -> None let make qid = make (Level qid) let name u = match data u with | Level l -> Some l | _ -> None end (** Level maps *) module LMap = struct module M = HMap.Make (Level) include M let lunion l r = union (fun _k l _r -> Some l) l r let subst_union l r = union (fun _k l r -> match l, r with | Some _, _ -> Some l | None, None -> Some l | _, _ -> Some r) l r let diff ext orig = fold (fun u v acc -> if mem u orig then acc else add u v acc) ext empty let pr f m = h (prlist_with_sep fnl (fun (u, v) -> Level.pr u ++ f v) (bindings m)) end module LSet = struct include LMap.Set let pr prl s = str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}" let of_array l = Array.fold_left (fun acc x -> add x acc) empty l end type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level type universe_set = LSet.t (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int (* Hashing of expressions *) module ExprHash = struct type t = Level.t * int type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let eq l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module H = Hashcons.Make(ExprHash) let hcons = Hashcons.simple_hcons H.generate H.hcons Level.hcons let make l = (l, 0) let compare u v = if u == v then 0 else let (x, n) = u and (x', n') = v in let c = Int.compare n n' in if Int.equal 0 c then Level.compare x x' else c let sprop = hcons (Level.sprop, 0) let prop = hcons (Level.prop, 0) let set = hcons (Level.set, 0) let type1 = hcons (Level.set, 1) let is_small = function | (l,0) -> Level.is_small l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let hash = ExprHash.hash let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && not (Level.is_sprop v)) else false let successor (u,n as e) = if is_small e then type1 else (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_small u then (Level.set,n+k) else (u,n+k) type super_result = SuperSame of bool (* The level expressions are in cumulativity relation. boolean indicates if left is smaller than right? *) | SuperDiff of int (* The level expressions are unrelated, the comparison result is canonical *) (** [super u v] compares two level expressions, returning [SuperSame] if they refer to the same level at potentially different increments or [SuperDiff] if they are different. The booleans indicate if the left expression is "smaller" than the right one in both cases. *) let super (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then SuperSame (n < n') else let open RawLevel in match Level.data u, n, Level.data v, n' with | SProp, _, SProp, _ | Prop, _, Prop, _ -> SuperSame (n < n') | SProp, 0, Prop, 0 -> SuperSame true | Prop, 0, SProp, 0 -> SuperSame false | (SProp | Prop), 0, _, _ -> SuperSame true | _, _, (SProp | Prop), 0 -> SuperSame false | _, _, _, _ -> SuperDiff cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let pr_with f (v, n) = if Int.equal n 0 then f v else f v ++ str"+" ++ int n let is_level = function | (_v, 0) -> true | _ -> false let level = function | (v,0) -> Some v | _ -> None let get_level (v,_n) = v let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then (Level.set, n) else (v', n) end type t = Expr.t list let tip l = [l] let cons x l = x :: l let rec hash = function | [] -> 0 | e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l) let equal x y = x == y || List.equal Expr.equal x y let compare x y = if x == y then 0 else List.compare Expr.compare x y module Huniv = Hashcons.Hlist(Expr) let hcons = Hashcons.recursive_hcons Huniv.generate Huniv.hcons Expr.hcons module Self = struct type nonrec t = t let compare = compare end module Map = CMap.Make(Self) module Set = CSet.Make(Self) let make l = tip (Expr.make l) let tip x = tip x let pr l = match l with | [u] -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr l) ++ str ")" let pr_with f l = match l with | [u] -> Expr.pr_with f u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma (Expr.pr_with f) l) ++ str ")" let is_level l = match l with | [l] -> Expr.is_level l | _ -> false let rec is_levels l = match l with | l :: r -> Expr.is_level l && is_levels r | [] -> true let level l = match l with | [l] -> Expr.level l | _ -> None let levels l = List.fold_left (fun acc x -> LSet.add (Expr.get_level x) acc) LSet.empty l let is_small u = match u with | [l] -> Expr.is_small l | _ -> false let sprop = tip Expr.sprop (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip Expr.type1 let is_sprop x = equal sprop x let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies just above the universe variable u. Used to type the sort u. *) let super l = if is_small l then type1 else List.Smart.map (fun x -> Expr.successor x) l let addn n l = List.Smart.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | [], _ -> l2 | _, [] -> l1 | h1 :: t1, h2 :: t2 -> let open Expr in (match super h1 h2 with | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2 | SuperSame false -> merge_univs l1 t2 | SuperDiff c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | b :: l' -> let open Expr in (match super a b with | SuperSame false -> aux a l' | SuperSame true -> l | SuperDiff c -> if c <= 0 then cons a l else cons b (aux a l')) | [] -> cons a l in List.fold_right (fun a acc -> aux a acc) u [] (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let exists = List.exists let for_all = List.for_all let repr x : t = x end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let is_small_univ = Universe.is_small let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super let universe_level = Universe.level type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq type explanation = (constraint_type * Level.t) list let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = v 0 (prlist_with_sep spc (fun (u1,op,u2) -> hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2)) (elements c)) end let empty_constraint = Constraint.empty let union_constraint = Constraint.union let eq_constraint = Constraint.equal type constraints = Constraint.t module Hconstraint = Hashcons.Make( struct type t = univ_constraint type u = universe_level -> universe_level let hashcons hul (l1,k,l2) = (hul l1, k, hul l2) let eq (l1,k,l2) (l1',k',l2') = l1 == l1' && k == k' && l2 == l2' let hash = Hashtbl.hash end) module Hconstraints = Hashcons.Make( struct type t = constraints type u = univ_constraint -> univ_constraint let hashcons huc s = Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty let eq s s' = List.for_all2eq (==) (Constraint.elements s) (Constraint.elements s') let hash = Hashtbl.hash end) let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint (** A value with universe constraints. *) type 'a constrained = 'a * constraints let constraints_of (_, cst) = cst (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let enforce_eq_level u v c = (* We discard trivial constraints like u=u *) if Level.equal u v then c else Constraint.add (u,Eq,v) c let enforce_eq u v c = match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> anomaly (Pp.str "A universe comparison can only happen between variables.") let check_univ_eq u v = Universe.equal u v let enforce_eq u v c = if check_univ_eq u v then c else enforce_eq u v c let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Universe.Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u and k>0 *) then if Level.equal x y then (* u+k <= u with k>0 *) Constraint.add (x,Lt,x) c else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else Constraint.add (x,Le,y) c (* u <= v implies u <= v+k *) let check_univ_leq_one u v = Universe.exists (Universe.Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = match Universe.is_sprop u, Universe.is_sprop v with | true, true -> c | true, false -> Constraint.add (Level.sprop,Le,Level.prop) c | false, true -> Constraint.add (Level.prop,Le,Level.sprop) c | false, false -> List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let enforce_leq_level u v c = if Level.equal u v then c else Constraint.add (u,Le,v) c (* Miscellaneous functions to remove or test local univ assumed to occur in a universe *) let univ_level_mem u v = List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v let univ_level_rem u v min = match Universe.level v with | Some u' -> if Level.equal u u' then min else v | None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v (* Is u mentioned in v (or equals to v) ? *) (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map module Variance = struct (** A universe position in the instance given to a cumulative inductive can be the following. Note there is no Contravariant case because [forall x : A, B <= forall x : A', B'] requires [A = A'] as opposed to [A' <= A]. *) type t = Irrelevant | Covariant | Invariant let sup x y = match x, y with | Irrelevant, s | s, Irrelevant -> s | Invariant, _ | _, Invariant -> Invariant | Covariant, Covariant -> Covariant let equal a b = match a,b with | Irrelevant, Irrelevant | Covariant, Covariant | Invariant, Invariant -> true | (Irrelevant | Covariant | Invariant), _ -> false let check_subtype x y = match x, y with | (Irrelevant | Covariant | Invariant), Irrelevant -> true | Irrelevant, Covariant -> false | (Covariant | Invariant), Covariant -> true | (Irrelevant | Covariant), Invariant -> false | Invariant, Invariant -> true let pr = function | Irrelevant -> str "*" | Covariant -> str "+" | Invariant -> str "=" let leq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant -> enforce_leq_level u u' csts | Invariant -> enforce_eq_level u u' csts let eq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant | Invariant -> enforce_eq_level u u' csts let leq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 leq_constraint csts variance u u' let eq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 eq_constraint csts variance u u' end module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t val equal : t -> t -> bool val length : t -> int val hcons : t -> t val hash : t -> int val share : t -> t * int val subst_fn : universe_level_subst_fn -> t -> t val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t val levels : t -> LSet.t end = struct type t = Level.t array let empty : t = [||] module HInstancestruct = struct type nonrec t = t type u = Level.t -> Level.t let hashcons huniv a = let len = Array.length a in if Int.equal len 0 then empty else begin for i = 0 to len - 1 do let x = Array.unsafe_get a i in let x' = huniv x in if x == x' then () else Array.unsafe_set a i x' done; a end let eq t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hash a = let accu = ref 0 in for i = 0 to Array.length a - 1 do let l = Array.unsafe_get a i in let h = Level.hash l in accu := Hashset.Combine.combine !accu h; done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in h end module HInstance = Hashcons.Make(HInstancestruct) let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons let hash = HInstancestruct.hash let share a = (hcons a, hash a) let empty = hcons [||] let is_empty x = Int.equal (Array.length x) 0 let append x y = if Array.length x = 0 then y else if Array.length y = 0 then x else Array.append x y let of_array a = assert(Array.for_all (fun x -> not (Level.is_prop x || Level.is_sprop x)) a); a let to_array a = a let length a = Array.length a let subst_fn fn t = let t' = CArray.Smart.map fn t in if t' == t then t else of_array t' let levels x = LSet.of_array x let pr prl ?variance = let ppu i u = let v = Option.map (fun v -> v.(i)) variance in pr_opt_no_spc Variance.pr v ++ prl u in prvecti_with_sep spc ppu let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) end let enforce_eq_instances x y = let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with") (Pp.str " instances of different lengths.")); CArray.fold_right2 enforce_eq_level ax ay let enforce_eq_variance_instances = Variance.eq_constraints let enforce_leq_variance_instances = Variance.leq_constraints let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.Smart.map (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = List.Smart.map f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty type 'a puniverses = 'a * Instance.t let out_punivs (x, _y) = x let in_punivs x = (x, Instance.empty) let eq_puniverses f (x, u) (y, u') = f x y && Instance.equal u u' (** A context of universe levels with universe constraints, representing local universe variables and constraints *) module UContext = struct type t = Instance.t constrained let make x = x (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl ?variance (univs, cst as ctx) = if is_empty ctx then mt() else h (Instance.pr prl ?variance univs ++ str " |= ") ++ h (v 0 (Constraint.pr prl cst)) let hcons (univs, cst) = (Instance.hcons univs, hcons_constraints cst) let instance (univs, _cst) = univs let constraints (_univs, cst) = cst let union (univs, cst) (univs', cst') = Instance.append univs univs', Constraint.union cst cst' let dest x = x let size (x,_) = Instance.length x end type universe_context = UContext.t let hcons_universe_context = UContext.hcons module AUContext = struct type t = Names.Name.t array constrained let make names csts : t = names, csts let repr (inst, cst) = (Array.init (Array.length inst) (fun i -> Level.var i), cst) let pr f ?variance ctx = UContext.pr f ?variance (repr ctx) let instantiate inst (u, cst) = assert (Array.length u = Array.length inst); subst_instance_constraints inst cst let names (nas, _) = nas let hcons (univs, cst) = (Array.map Names.Name.hcons univs, hcons_constraints cst) let empty = ([||], Constraint.empty) let is_empty (nas, cst) = Array.is_empty nas && Constraint.is_empty cst let union (nas, cst) (nas', cst') = (Array.append nas nas', Constraint.union cst cst') let size (nas, _) = Array.length nas end type 'a univ_abstracted = { univ_abstracted_value : 'a; univ_abstracted_binder : AUContext.t; } let map_univ_abstracted f {univ_abstracted_value;univ_abstracted_binder} = let univ_abstracted_value = f univ_abstracted_value in {univ_abstracted_value;univ_abstracted_binder} let hcons_abstract_universe_context = AUContext.hcons (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet = struct type t = universe_set constrained let empty = (LSet.empty, Constraint.empty) let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst let equal (univs, cst as x) (univs', cst' as y) = x == y || (LSet.equal univs univs' && Constraint.equal cst cst') let of_set s = (s, Constraint.empty) let singleton l = of_set (LSet.singleton l) let of_instance i = of_set (Instance.levels i) let union (univs, cst as x) (univs', cst' as y) = if x == y then x else LSet.union univs univs', Constraint.union cst cst' let append (univs, cst) (univs', cst') = let univs = LSet.fold LSet.add univs univs' in let cst = Constraint.fold Constraint.add cst cst' in (univs, cst) let diff (univs, cst) (univs', cst') = LSet.diff univs univs', Constraint.diff cst cst' let add_universe u (univs, cst) = LSet.add u univs, cst let add_constraints cst' (univs, cst) = univs, Constraint.union cst cst' let add_instance inst (univs, cst) = let v = Instance.to_array inst in let fold accu u = LSet.add u accu in let univs = Array.fold_left fold univs v in (univs, cst) let sort_levels a = Array.sort Level.compare a; a let to_context (ctx, cst) = (Instance.of_array (sort_levels (Array.of_list (LSet.elements ctx))), cst) let of_context (ctx, cst) = (Instance.levels ctx, cst) let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h (LSet.pr prl univs ++ str " |= ") ++ h (v 0 (Constraint.pr prl cst)) let constraints (_univs, cst) = cst let levels (univs, _cst) = univs let size (univs,_) = LSet.cardinal univs end type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set let extend_in_context_set (a, ctx) ctx' = (a, ContextSet.union ctx ctx') (** Substitutions. *) let empty_subst = LMap.empty let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = List.Smart.map f u in if u == u' then u else Universe.sort u' let subst_univs_level_instance subst i = let i' = Instance.subst_fn (subst_univs_level_level subst) i in if i == i' then i else i' let subst_univs_level_constraint subst (u,d,v) = let u' = subst_univs_level_level subst u and v' = subst_univs_level_level subst v in if d != Lt && Level.equal u' v' then None else Some (u',d,v') let subst_univs_level_constraints subst csts = Constraint.fold (fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c)) csts Constraint.empty let subst_univs_level_abstract_universe_context subst (inst, csts) = inst, subst_univs_level_constraints subst csts (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = List.fold_right (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs [] subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u)) substs nosubst let make_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add l (Level.var i) acc) LMap.empty arr let make_inverse_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add (Level.var i) l acc) LMap.empty arr let make_abstract_instance (ctx, _) = Array.init (Array.length ctx) (fun i -> Level.var i) let abstract_universes nas ctx = let instance = UContext.instance ctx in let () = assert (Int.equal (Array.length nas) (Instance.length instance)) in let subst = make_instance_subst instance in let cstrs = subst_univs_level_constraints subst (UContext.constraints ctx) in let ctx = (nas, cstrs) in instance, ctx let rec compact_univ s vars i u = match u with | [] -> (s, List.rev vars) | (lvl, _) :: u -> match Level.var_index lvl with | Some k when not (LMap.mem lvl s) -> let lvl' = Level.var i in compact_univ (LMap.add lvl lvl' s) (k :: vars) (i+1) u | _ -> compact_univ s vars i u let compact_univ u = let (s, s') = compact_univ LMap.empty [] 0 u in (subst_univs_level_universe s u, s') (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_abstract_universe_context = AUContext.pr let pr_universe_context_set = ContextSet.pr let pr_universe_subst = LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ()) let pr_universe_level_subst = LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ()) module Huniverse_set = Hashcons.Make( struct type t = universe_set type u = universe_level -> universe_level let hashcons huc s = LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty let eq s s' = LSet.equal s s' let hash = Hashtbl.hash end) let hcons_universe_set = Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons let hcons_universe_context_set (v, c) = (hcons_universe_set v, hcons_constraints c) let hcons_univ x = Universe.hcons x (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe * explanation Lazy.t option (* Do not use in this file as we may be type-in-type *) exception UniverseInconsistency of univ_inconsistency let explain_universe_inconsistency prl (o,u,v,p : univ_inconsistency) = let pr_uni = Universe.pr_with prl in let pr_rel = function | Eq -> str"=" | Lt -> str"<" | Le -> str"<=" in let reason = match p with | None -> mt() | Some p -> let p = Lazy.force p in if p = [] then mt () else str " because" ++ spc() ++ pr_uni v ++ prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v) p ++ (if Universe.equal (Universe.make (snd (List.last p))) u then mt() else (spc() ++ str "= " ++ pr_uni u)) in str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++ pr_rel o ++ spc() ++ pr_uni v ++ reason