(* $Id$ *) open Pp open Util open Names open Univ open Generic open Term open Constant open Inductive open Sign open Environ open Reduction open Instantiate open Type_errors let make_judge v tj = { uj_val = v; uj_type = tj.body; uj_kind= DOP0 (Sort tj.typ) } let j_val_only j = j.uj_val (* Faut-il caster ? *) let j_val = j_val_only let j_val_cast j = mkCast j.uj_val j.uj_type let typed_type_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_kind with | DOP0(Sort s) -> { body = j.uj_type; typ = s } | _ -> error_not_type CCI env j.uj_type let assumption_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_type with | DOP0(Sort s) -> { body = j.uj_val; typ = s } | _ -> error_assumption CCI env j.uj_val (* Type of a de Bruijn index. *) let relative env n = try let (_,typ) = lookup_rel n env in { uj_val = Rel n; uj_type = lift n typ.body; uj_kind = DOP0 (Sort typ.typ) } with Not_found -> error_unbound_rel CCI env n (* Management of context of variables. *) (* Checks if a context of variable is included in another one. *) let rec hyps_inclusion env sigma sign1 sign2 = if isnull_sign sign1 then true else let (id1,ty1) = hd_sign sign1 in let rec search sign2 = if isnull_sign sign2 then false else let (id2,ty2) = hd_sign sign2 in if id1 = id2 then (is_conv env sigma (body_of_type ty1) (body_of_type ty2)) & hyps_inclusion env sigma (tl_sign sign1) (tl_sign sign2) else search (tl_sign sign2) in search sign2 (* Checks if the given context of variables [hyps] is included in the current context of [env]. *) let check_hyps id env sigma hyps = let hyps' = var_context env in if not (hyps_inclusion env sigma hyps hyps') then error_reference_variables CCI env id (* Instantiation of terms on real arguments. *) let type_of_constant env sigma (sp,args) = let cb = lookup_constant sp env in let hyps = cb.const_hyps in (* TODO: check args *) instantiate_type (ids_of_sign hyps) cb.const_type (Array.to_list args) (* Inductive types. *) (* Q: A faire disparaitre ?? let instantiate_arity mis = let ids = ids_of_sign mis.mis_mib.mind_hyps in let args = Array.to_list mis.mis_args in let arity = mis.mis_mip.mind_arity in { body = instantiate_constr ids arity.body args; typ = arity.typ } *) let instantiate_arity = Instantiate.mis_typed_arity let type_of_inductive env sigma i = let mis = lookup_mind_specif i env in let hyps = mis.mis_mib.mind_hyps in (* TODO: check args *) instantiate_arity mis (* Constructors. *) (* let instantiate_lc mis = let hyps = mis.mis_mib.mind_hyps in let lc = mis.mis_mip.mind_lc in instantiate_constr (ids_of_sign hyps) lc (Array.to_list mis.mis_args) *) let instantiate_lc = Instantiate.mis_lc let type_of_constructor env sigma ((ind_sp,j),args as cstr) = let mind = inductive_of_constructor cstr in let mis = lookup_mind_specif mind env in (* TODO: check args *) let specif = instantiate_lc mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) in if j > mis_nconstr mis then anomaly "type_of_constructor" else sAPPViList (j-1) specif (list_tabulate make_ik (mis_ntypes mis)) (* gives the vector of constructors and of types of constructors of an inductive definition correctly instanciated *) let mis_type_mconstructs mis = let specif = instantiate_lc mis and ntypes = mis_ntypes mis and nconstr = mis_nconstr mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) and make_ck k = DOPN (MutConstruct ((mis.mis_sp,mis.mis_tyi),k+1), mis.mis_args) in (Array.init nconstr make_ck, sAPPVList specif (list_tabulate make_ik ntypes)) let type_mconstructs env sigma mind = let mis = lookup_mind_specif mind env in mis_type_mconstructs mis let mis_type_mconstruct i mispec = let specif = instantiate_lc mispec and ntypes = mis_ntypes mispec and nconstr = mis_nconstr mispec in let make_Ik k = DOPN(MutInd(mispec.mis_sp,k),mispec.mis_args) in if i > nconstr then error "Not enough constructors in the type"; sAPPViList (i-1) specif (list_tabulate make_Ik ntypes) let type_mconstruct env sigma i mind = let mis = lookup_mind_specif mind env in mis_type_mconstruct i mis let type_inst_construct env sigma i (mind,globargs) = let mis = lookup_mind_specif mind env in let tc = mis_type_mconstruct i mis in hnf_prod_applist env sigma "Typing.type_construct" tc globargs let type_of_existential env sigma c = let (ev,args) = destEvar c in let evi = Evd.map sigma ev in let hyps = var_context evi.Evd.evar_env in let id = id_of_string ("?" ^ string_of_int ev) in (* TODO: check args *) instantiate_constr (ids_of_sign hyps) evi.Evd.evar_concl (Array.to_list args) (* Case. *) let rec sort_of_arity env sigma c = match whd_betadeltaiota env sigma c with | DOP0(Sort( _)) as c' -> c' | DOP2(Prod,_,DLAM(_,c2)) -> sort_of_arity env sigma c2 | _ -> invalid_arg "sort_of_arity" let make_arity_dep env sigma k = let rec mrec c m = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> mkArrow m k | DOP2(Prod,b,DLAM(n,c_0)) -> prod_name env (n,b,mrec c_0 (applist(lift 1 m,[Rel 1]))) | _ -> invalid_arg "make_arity_dep" in mrec let make_arity_nodep env sigma k = let rec mrec c = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> k | DOP2(Prod,b,DLAM(x,c_0)) -> DOP2(Prod,b,DLAM(x,mrec c_0)) | _ -> invalid_arg "make_arity_nodep" in mrec let error_elim_expln env sigma kp ki = if is_info_sort env sigma kp && not (is_info_sort env sigma ki) then "non-informative objects may not construct informative ones." else match (kp,ki) with | (DOP0(Sort (Type _)), DOP0(Sort (Prop _))) -> "strong elimination on non-small inductive types leads to paradoxes." | _ -> "wrong arity" exception Arity of (constr * constr * string) option let is_correct_arity env sigma kelim (c,p) = let rec srec ind (pt,t) = try (match whd_betadeltaiota env sigma pt, whd_betadeltaiota env sigma t with | DOP2(Prod,a1,DLAM(_,a2)), DOP2(Prod,a1',DLAM(_,a2')) -> if is_conv env sigma a1 a1' then srec (applist(lift 1 ind,[Rel 1])) (a2,a2') else raise (Arity None) | DOP2(Prod,a1,DLAM(_,a2)), ki -> let k = whd_betadeltaiota env sigma a2 in let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if is_conv env sigma a1 ind then if List.exists (base_sort_cmp CONV ksort) kelim then (true,k) else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki))) else raise (Arity None) | k, DOP2(Prod,_,_) -> raise (Arity None) | k, ki -> let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if List.exists (base_sort_cmp CONV ksort) kelim then false,k else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki)))) with Arity kinds -> let listarity = (List.map (fun s -> make_arity_dep env sigma (DOP0(Sort s)) t ind) kelim) @(List.map (fun s -> make_arity_nodep env sigma (DOP0(Sort s)) t) kelim) in error_elim_arity CCI env ind listarity c p pt kinds in srec let cast_instantiate_arity mis = let tty = instantiate_arity mis in DOP2 (Cast, tty.body, DOP0 (Sort tty.typ)) let find_case_dep_nparams env sigma (c,p) (mind,largs) typP = let mis = lookup_mind_specif mind env in let nparams = mis_nparams mis and kelim = mis_kelim mis and t = cast_instantiate_arity mis in let (globargs,la) = list_chop nparams largs in let glob_t = hnf_prod_applist env sigma "find_elim_boolean" t globargs in let arity = applist(mkMutInd mind,globargs) in let (dep,_) = is_correct_arity env sigma kelim (c,p) arity (typP,glob_t) in (dep, (nparams, globargs,la)) let type_one_branch_dep env sigma (nparams,globargs,p) co t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> prod_name env (x,a1,typrec (n+1) a2) | x -> let lAV = destAppL (ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in applist (appvect ((lift n p),vargs), [applist(co,((List.map (lift n) globargs)@(rel_list 0 n)))]) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) let type_one_branch_nodep env sigma (nparams,globargs,p) t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> DOP2(Prod,a1,DLAM(x,typrec (n+1) a2)) | x -> let lAV = destAppL(ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in appvect (lift n p,vargs) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) (* type_case_branches type un
Case c of ... end
ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc
pt = sorte de p
type_case_branches retourne (lb, lr); lb est le vecteur des types
attendus dans les branches du Case; lr est le type attendu du resultat
*)
let type_case_branches env sigma ct pt p c =
try
let (mind,largs) = find_mrectype env sigma ct in
let (dep,(nparams,globargs,la)) =
find_case_dep_nparams env sigma (c,p) (mind,largs) pt
in
let (lconstruct,ltypconstr) = type_mconstructs env sigma mind in
let mI = mkMutInd mind in
if dep then
(mI,
array_map2 (type_one_branch_dep env sigma (nparams,globargs,p))
lconstruct ltypconstr,
beta_applist (p,(la@[c])))
else
(mI,
Array.map (type_one_branch_nodep env sigma (nparams,globargs,p))
ltypconstr,
beta_applist (p,la))
with Induc ->
error_case_not_inductive CCI env c ct
let check_branches_message env sigma (c,ct) (explft,lft) =
let n = Array.length explft
and expn = Array.length lft in
if n<>expn then error_number_branches CCI env c ct expn;
for i = 0 to n-1 do
if not (is_conv_leq env sigma lft.(i) (explft.(i))) then
error_ill_formed_branch CCI env c i (nf_betaiota env sigma lft.(i))
(nf_betaiota env sigma explft.(i))
done
let type_of_case env sigma pj cj lfj =
let lft = Array.map (fun j -> j.uj_type) lfj in
let (mind,bty,rslty) =
type_case_branches env sigma cj.uj_type pj.uj_type pj.uj_val cj.uj_val in
let kind = sort_of_arity env sigma pj.uj_type in
check_branches_message env sigma (cj.uj_val,cj.uj_type) (bty,lft);
{ uj_val =
mkMutCaseA (ci_of_mind mind) (j_val pj) (j_val cj) (Array.map j_val lfj);
uj_type = rslty;
uj_kind = kind }
(* Prop and Set *)
let judge_of_prop =
{ uj_val = DOP0(Sort prop);
uj_type = DOP0(Sort type_0);
uj_kind = DOP0(Sort type_1) }
let judge_of_set =
{ uj_val = DOP0(Sort spec);
uj_type = DOP0(Sort type_0);
uj_kind = DOP0(Sort type_1) }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
(* Type of Type(i). *)
let judge_of_type u =
let (uu,uuu,c) = super_super u in
{ uj_val = DOP0 (Sort (Type u));
uj_type = DOP0 (Sort (Type uu));
uj_kind = DOP0 (Sort (Type uuu)) },
c
let type_of_sort c =
match c with
| DOP0 (Sort (Type u)) -> let (uu,cst) = super u in mkType uu, cst
| DOP0 (Sort (Prop _)) -> mkType prop_univ, Constraint.empty
| _ -> invalid_arg "type_of_sort"
(* Type of a lambda-abstraction. *)
let sort_of_product domsort rangsort g =
match rangsort with
(* Product rule (s,Prop,Prop) *)
| Prop _ -> rangsort, Constraint.empty
| Type u2 ->
(match domsort with
(* Product rule (Prop,Type_i,Type_i) *)
| Prop _ -> rangsort, Constraint.empty
(* Product rule (Type_i,Type_i,Type_i) *)
| Type u1 -> let (u12,cst) = sup u1 u2 g in Type u12, cst)
let sort_of_product_without_univ domsort rangsort =
match rangsort with
| Prop _ -> rangsort
| Type u2 ->
(match domsort with
| Prop _ -> rangsort
| Type u1 -> Type dummy_univ)
let abs_rel env sigma name var j =
let rngtyp = whd_betadeltaiota env sigma j.uj_kind in
let cvar = incast_type var in
let (s,cst) = sort_of_product var.typ (destSort rngtyp) (universes env) in
{ uj_val = mkLambda name cvar (j_val j);
uj_type = mkProd name cvar j.uj_type;
uj_kind = mkSort s },
cst
(* Type of a product. *)
let gen_rel env sigma name var j =
let jtyp = whd_betadeltaiota env sigma j.uj_type in
let jkind = whd_betadeltaiota env sigma j.uj_kind in
let j = { uj_val = j.uj_val; uj_type = jtyp; uj_kind = jkind } in
if isprop jkind then
error "Proof objects can only be abstracted"
else
match jtyp with
| DOP0(Sort s) ->
let (s',g) = sort_of_product var.typ s (universes env) in
let res_type = mkSort s' in
let (res_kind,g') = type_of_sort res_type in
{ uj_val =
mkProd name (mkCast var.body (mkSort var.typ)) (j_val_cast j);
uj_type = res_type;
uj_kind = res_kind }, g'
| _ ->
error_generalization CCI env (name,var) j.uj_val
(* Type of a cast. *)
let cast_rel env sigma cj tj =
if is_conv_leq env sigma cj.uj_type tj.uj_val then
{ uj_val = j_val_only cj;
uj_type = tj.uj_val;
uj_kind = whd_betadeltaiota env sigma tj.uj_type }
else
error_actual_type CCI env cj.uj_val cj.uj_type tj.uj_val
(* Type of an application. *)
let apply_rel_list env sigma nocheck argjl funj =
let rec apply_rec typ cst = function
| [] ->
{ uj_val = applist (j_val_only funj, List.map j_val_only argjl);
uj_type = typ;
uj_kind = funj.uj_kind },
cst
| hj::restjl ->
match whd_betadeltaiota env sigma typ with
| DOP2(Prod,c1,DLAM(_,c2)) ->
if nocheck then
apply_rec (subst1 hj.uj_val c2) cst restjl
else
(try
let c = conv_leq env sigma hj.uj_type c1 in
let cst' = Constraint.union cst c in
apply_rec (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply CCI env "Type Error" funj argjl)
| _ ->
error_cant_apply CCI env "Non-functional construction" funj argjl
in
apply_rec funj.uj_type Constraint.empty argjl
(* Fixpoints. *)
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
let noccur_with_meta n m term =
let rec occur_rec n = function
| Rel p -> if n<=p & p