(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* try conv_leq false env t1 t2 with NotConvertible -> raise (NotConvertibleVect i)) () v1 v2 let check_constraints cst env = if Environ.check_constraints cst env then () else error_unsatisfied_constraints env cst (* This should be a type (a priori without intention to be an assumption) *) let check_type env c t = match kind(whd_all env t) with | Sort s -> s | _ -> error_not_type env (make_judge c t) (* This should be a type intended to be assumed. The error message is not as useful as for [type_judgment]. *) let infer_assumption env t ty = try let s = check_type env t ty in (match s with Sorts.SProp -> Irrelevant | _ -> Relevant) with TypeError _ -> error_assumption env (make_judge t ty) let warn_bad_relevance_name = "bad-relevance" let warn_bad_relevance = CWarnings.create ~name:warn_bad_relevance_name ~category:"debug" ~default:CWarnings.Disabled Pp.(function | None -> str "Bad relevance in case annotation." | Some x -> str "Bad relevance for binder " ++ Name.print x.binder_name ++ str ".") let warn_bad_relevance_ci ?loc () = warn_bad_relevance ?loc None let warn_bad_relevance ?loc x = warn_bad_relevance ?loc (Some x) let check_assumption env x t ty = let r = x.binder_relevance in let r' = infer_assumption env t ty in let x = if Sorts.relevance_equal r r' then x else (warn_bad_relevance x; {x with binder_relevance = r'}) in x (************************************************) (* Incremental typing rules: builds a typing judgment given the *) (* judgments for the subterms. *) (*s Type of sorts *) (* Prop and Set *) let type1 = mkSort Sorts.type1 (* Type of Type(i). *) let type_of_type u = let uu = Universe.super u in mkType uu let type_of_sort = function | SProp | Prop | Set -> type1 | Type u -> type_of_type u (*s Type of a de Bruijn index. *) let type_of_relative env n = try env |> lookup_rel n |> RelDecl.get_type |> lift n with Not_found -> error_unbound_rel env n (* Type of variables *) let type_of_variable env id = try named_type id env with Not_found -> error_unbound_var env id (* Management of context of variables. *) (* Checks if a context of variables can be instantiated by the variables of the current env. Order does not have to be checked assuming that all names are distinct *) let check_hyps_inclusion env ?evars c sign = let conv env a b = conv env ?evars a b in Context.Named.fold_outside (fun d1 () -> let open Context.Named.Declaration in let id = NamedDecl.get_id d1 in try let d2 = lookup_named id env in conv env (get_type d2) (get_type d1); (match d2,d1 with | LocalAssum _, LocalAssum _ -> () | LocalAssum _, LocalDef _ -> (* This is wrong, because we don't know if the body is needed or not for typechecking: *) () | LocalDef _, LocalAssum _ -> raise NotConvertible | LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1); with Not_found | NotConvertible | Option.Heterogeneous -> error_reference_variables env id c) sign ~init:() (* Instantiation of terms on real arguments. *) (* Make a type polymorphic if an arity *) (* Type of constants *) let type_of_constant env (kn,_u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in let ty, cu = constant_type env cst in let () = check_constraints cu env in ty let type_of_constant_in env (kn,_u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in constant_type_in env cst (* Type of a lambda-abstraction. *) (* [judge_of_abstraction env name var j] implements the rule env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s ----------------------------------------------------------------------- env |- [name:typ]j.uj_val : (name:typ)j.uj_type Since all products are defined in the Calculus of Inductive Constructions and no upper constraint exists on the sort $s$, we don't need to compute $s$ *) let type_of_abstraction _env name var ty = mkProd (name, var, ty) (* Type of an application. *) let make_judgev c t = Array.map2 make_judge c t let rec check_empty_stack = function | [] -> true | CClosure.Zupdate _ :: s -> check_empty_stack s | _ -> false let type_of_apply env func funt argsv argstv = let open CClosure in let len = Array.length argsv in let infos = create_clos_infos all env in let tab = create_tab () in let rec apply_rec i typ = if Int.equal i len then term_of_fconstr typ else let typ, stk = whd_stack infos tab typ [] in (** The return stack is known to be empty *) let () = assert (check_empty_stack stk) in match fterm_of typ with | FProd (_, c1, c2, e) -> let arg = argsv.(i) in let argt = argstv.(i) in let c1 = term_of_fconstr c1 in begin match conv_leq false env argt c1 with | () -> apply_rec (i+1) (mk_clos (Esubst.subs_cons (inject arg) e) c2) | exception NotConvertible -> error_cant_apply_bad_type env (i+1,c1,argt) (make_judge func funt) (make_judgev argsv argstv) end | _ -> error_cant_apply_not_functional env (make_judge func funt) (make_judgev argsv argstv) in apply_rec 0 (inject funt) (* Type of primitive constructs *) let type_of_prim_type _env u (type a) (prim : a CPrimitives.prim_type) = match prim with | CPrimitives.PT_int63 -> assert (Univ.Instance.is_empty u); Constr.mkSet | CPrimitives.PT_float64 -> assert (Univ.Instance.is_empty u); Constr.mkSet | CPrimitives.PT_array -> begin match Univ.Instance.to_array u with | [|u|] -> let ty = Constr.mkType (Univ.Universe.make u) in Constr.mkProd(Context.anonR, ty , ty) | _ -> anomaly Pp.(str"universe instance for array type should have length 1") end let type_of_int env = match env.retroknowledge.Retroknowledge.retro_int63 with | Some c -> mkConst c | None -> CErrors.user_err Pp.(str"The type int must be registered before this construction can be typechecked.") let type_of_float env = match env.retroknowledge.Retroknowledge.retro_float64 with | Some c -> mkConst c | None -> raise (Invalid_argument "Typeops.type_of_float: float64 not_defined") let type_of_array env u = assert (Univ.Instance.length u = 1); match env.retroknowledge.Retroknowledge.retro_array with | Some c -> mkConstU (c,u) | None -> CErrors.user_err Pp.(str"The type array must be registered before this construction can be typechecked.") (* Type of product *) let sort_of_product env domsort rangsort = match (domsort, rangsort) with | (_, SProp) | (SProp, _) -> rangsort (* Product rule (s,Prop,Prop) *) | (_, Prop) -> rangsort (* Product rule (Prop/Set,Set,Set) *) | ((Prop | Set), Set) -> rangsort (* Product rule (Type,Set,?) *) | (Type u1, Set) -> if is_impredicative_set env then (* Rule is (Type,Set,Set) in the Set-impredicative calculus *) rangsort else (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *) Sorts.sort_of_univ (Universe.sup Universe.type0 u1) (* Product rule (Prop,Type_i,Type_i) *) | (Set, Type u2) -> Sorts.sort_of_univ (Universe.sup Universe.type0 u2) (* Product rule (Prop,Type_i,Type_i) *) | (Prop, Type _) -> rangsort (* Product rule (Type_i,Type_i,Type_i) *) | (Type u1, Type u2) -> Sorts.sort_of_univ (Universe.sup u1 u2) (* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule env |- typ1:s1 env, name:typ1 |- typ2 : s2 ------------------------------------------------------------------------- s' >= (s1,s2), env |- (name:typ)j.uj_val : s' where j.uj_type is convertible to a sort s2 *) let type_of_product env _name s1 s2 = let s = sort_of_product env s1 s2 in mkSort s (* Type of a type cast *) (* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule env |- c:typ1 env |- typ2:s env |- typ1 <= typ2 --------------------------------------------------------------------- env |- c:typ2 *) let check_cast env c ct k expected_type = try match k with | VMcast -> Vconv.vm_conv CUMUL env ct expected_type | DEFAULTcast -> default_conv ~l2r:false CUMUL env ct expected_type | REVERTcast -> default_conv ~l2r:true CUMUL env ct expected_type | NATIVEcast -> let sigma = Nativelambda.empty_evars in Nativeconv.native_conv CUMUL sigma env ct expected_type with NotConvertible -> error_actual_type env (make_judge c ct) expected_type let judge_of_int env i = make_judge (Constr.mkInt i) (type_of_int env) let judge_of_float env f = make_judge (Constr.mkFloat f) (type_of_float env) let judge_of_array env u tj defj = let def = defj.uj_val in let ty = defj.uj_type in Array.iter (fun j -> check_cast env j.uj_val j.uj_type DEFAULTcast ty) tj; make_judge (mkArray(u, Array.map j_val tj, def, ty)) (mkApp (type_of_array env u, [|ty|])) (* Inductive types. *) (* The type is parametric over the uniform parameters whose conclusion is in Type; to enforce the internal constraints between the parameters and the instances of Type occurring in the type of the constructors, we use the level variables _statically_ assigned to the conclusions of the parameters as mediators: e.g. if a parameter has conclusion Type(alpha), static constraints of the form alpha<=v exist between alpha and the Type's occurring in the constructor types; when the parameters is finally instantiated by a term of conclusion Type(u), then the constraints u<=alpha is computed in the App case of execute; from this constraints, the expected dynamic constraints of the form u<=v are enforced *) let type_of_inductive_knowing_parameters env (ind,u) args = let (mib,_mip) as spec = lookup_mind_specif env ind in check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters (spec,u) (Inductive.make_param_univs env args) in check_constraints cst env; t let type_of_inductive env (ind,u) = let (mib,mip) = lookup_mind_specif env ind in check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive ((mib,mip),u) in check_constraints cst env; t (* Constructors. *) let type_of_constructor env (c,_u as cu) = let () = let ((kn,_),_) = c in let mib = lookup_mind kn env in check_hyps_inclusion env (GlobRef.ConstructRef c) mib.mind_hyps in let specif = lookup_mind_specif env (inductive_of_constructor c) in let t,cst = constrained_type_of_constructor cu specif in let () = check_constraints cst env in t (* Case. *) let check_branch_types env (ind,u) c ct lft explft = try conv_leq_vecti env lft explft with NotConvertibleVect i -> error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i) | Invalid_argument _ -> error_number_branches env (make_judge c ct) (Array.length explft) let should_invert_case env ci = ci.ci_relevance == Sorts.Relevant && let mib,mip = lookup_mind_specif env ci.ci_ind in mip.mind_relevance == Sorts.Irrelevant && (* NB: it's possible to have 2 ctors or arguments to 1 ctor by unsetting univ checks but we don't do special reduction in such cases XXX Someday consider more carefully what happens with letin params and arguments (currently they're squashed, see indtyping) *) Array.length mip.mind_nf_lc = 1 && List.length (fst mip.mind_nf_lc.(0)) = List.length mib.mind_params_ctxt let type_of_case env ci p pt iv c ct _lf lft = let (pind, _ as indspec) = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in let _, sp = try dest_arity env pt with NotArity -> error_elim_arity env pind c (make_judge p pt) None in let rp = Sorts.relevance_of_sort sp in let ci = if ci.ci_relevance == rp then ci else (warn_bad_relevance_ci (); {ci with ci_relevance=rp}) in let () = check_case_info env pind rp ci in let () = let is_inversion = match iv with | NoInvert -> false | CaseInvert _ -> true (* contents already checked *) in if not (is_inversion = should_invert_case env ci) then error_bad_invert env in let (bty,rslty) = type_case_branches env indspec (make_judge p pt) c in let () = check_branch_types env pind c ct lft bty in ci, rslty let type_of_projection env p c ct = let pty = lookup_projection p env in let (ind,u), args = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in assert(Ind.CanOrd.equal (Projection.inductive p) ind); let ty = Vars.subst_instance_constr u pty in substl (c :: CList.rev args) ty (* Fixpoints. *) (* Checks the type of a general (co)fixpoint, i.e. without checking *) (* the specific guard condition. *) let check_fixpoint env lna lar vdef vdeft = let lt = Array.length vdeft in assert (Int.equal (Array.length lar) lt); try conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar) with NotConvertibleVect i -> error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar (* Global references *) let type_of_global_in_context env r = let open Names.GlobRef in match r with | VarRef id -> Environ.named_type id env, Univ.AUContext.empty | ConstRef c -> let cb = Environ.lookup_constant c env in let univs = Declareops.constant_polymorphic_context cb in cb.Declarations.const_type, univs | IndRef ind -> let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let univs = Declareops.inductive_polymorphic_context mib in let inst = Univ.make_abstract_instance univs in Inductive.type_of_inductive (specif, inst), univs | ConstructRef cstr -> let (mib,_ as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in let univs = Declareops.inductive_polymorphic_context mib in let inst = Univ.make_abstract_instance univs in Inductive.type_of_constructor (cstr,inst) specif, univs (************************************************************************) (************************************************************************) let check_binder_annot s x = let r = x.binder_relevance in let r' = Sorts.relevance_of_sort s in if r' == r then x else (warn_bad_relevance x; {x with binder_relevance = r'}) (* The typing machine. *) (* ATTENTION : faudra faire le typage du contexte des Const, Ind et Constructsi un jour cela devient des constructions arbitraires et non plus des variables *) let rec execute env cstr = let open Context.Rel.Declaration in match kind cstr with (* Atomic terms *) | Sort s -> (match s with | SProp -> if not (Environ.sprop_allowed env) then error_disallowed_sprop env | _ -> ()); cstr, type_of_sort s | Rel n -> cstr, type_of_relative env n | Var id -> cstr, type_of_variable env id | Const c -> cstr, type_of_constant env c | Proj (p, c) -> let c', ct = execute env c in let cstr = if c == c' then cstr else mkProj (p,c') in cstr, type_of_projection env p c' ct (* Lambda calculus operators *) | App (f,args) -> let args', argst = execute_array env args in let f', ft = match kind f with | Ind ind when Environ.template_polymorphic_pind ind env -> f, type_of_inductive_knowing_parameters env ind argst | _ -> (* No template polymorphism *) execute env f in let cstr = if f == f' && args == args' then cstr else mkApp (f',args') in cstr, type_of_apply env f' ft args' argst | Lambda (name,c1,c2) -> let c1', s = execute_is_type env c1 in let name' = check_binder_annot s name in let env1 = push_rel (LocalAssum (name',c1')) env in let c2', c2t = execute env1 c2 in let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkLambda(name',c1',c2') in cstr, type_of_abstraction env name' c1 c2t | Prod (name,c1,c2) -> let c1', vars = execute_is_type env c1 in let name' = check_binder_annot vars name in let env1 = push_rel (LocalAssum (name',c1')) env in let c2', vars' = execute_is_type env1 c2 in let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkProd(name',c1',c2') in cstr, type_of_product env name' vars vars' | LetIn (name,c1,c2,c3) -> let c1', c1t = execute env c1 in let c2', c2s = execute_is_type env c2 in let name' = check_binder_annot c2s name in let () = check_cast env c1' c1t DEFAULTcast c2' in let env1 = push_rel (LocalDef (name',c1',c2')) env in let c3', c3t = execute env1 c3 in let cstr = if name == name' && c1 == c1' && c2 == c2' && c3 == c3' then cstr else mkLetIn(name',c1',c2',c3') in cstr, subst1 c1 c3t | Cast (c,k,t) -> let c', ct = execute env c in let t', _ts = execute_is_type env t in let () = check_cast env c' ct k t' in let cstr = if c == c' && t == t' then cstr else mkCast(c',k,t') in cstr, t' (* Inductive types *) | Ind ind -> cstr, type_of_inductive env ind | Construct c -> cstr, type_of_constructor env c | Case (ci,p,iv,c,lf) -> let c', ct = execute env c in let iv' = match iv with | NoInvert -> NoInvert | CaseInvert {univs;args} -> let ct' = mkApp (mkIndU (ci.ci_ind,univs), args) in let (ct', _) : constr * Sorts.t = execute_is_type env ct' in let () = conv_leq false env ct ct' in let _, args' = decompose_appvect ct' in if args == args' then iv else CaseInvert {univs;args=args'} in let p', pt = execute env p in let lf', lft = execute_array env lf in let ci', t = type_of_case env ci p' pt iv' c' ct lf' lft in let cstr = if ci == ci' && c == c' && p == p' && iv == iv' && lf == lf' then cstr else mkCase(ci',p',iv',c',lf') in cstr, t | Fix ((_vn,i as vni),recdef as fix) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cstr, fix = if recdef == recdef' then cstr, fix else let fix = (vni,recdef') in mkFix fix, fix in check_fix env fix; cstr, fix_ty | CoFix (i,recdef as cofix) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cstr, cofix = if recdef == recdef' then cstr, cofix else let cofix = (i,recdef') in mkCoFix cofix, cofix in check_cofix env cofix; cstr, fix_ty (* Primitive types *) | Int _ -> cstr, type_of_int env | Float _ -> cstr, type_of_float env | Array(u,t,def,ty) -> (* ty : Type@{u} and all of t,def : ty *) let ulev = match Univ.Instance.to_array u with | [|u|] -> u | _ -> assert false in let ty',tyty = execute env ty in check_cast env ty' tyty DEFAULTcast (mkType (Universe.make ulev)); let def', def_ty = execute env def in check_cast env def' def_ty DEFAULTcast ty'; let ta = type_of_array env u in let t' = Array.Smart.map (fun x -> let x', xt = execute env x in check_cast env x' xt DEFAULTcast ty'; x') t in let cstr = if def'==def && t'==t && ty'==ty then cstr else mkArray(u, t',def',ty') in cstr, mkApp(ta, [|ty'|]) (* Partial proofs: unsupported by the kernel *) | Meta _ -> anomaly (Pp.str "the kernel does not support metavariables.") | Evar _ -> anomaly (Pp.str "the kernel does not support existential variables.") and execute_is_type env constr = let c, t = execute env constr in c, check_type env constr t and execute_recdef env (names,lar,vdef as recdef) i = let lar', lart = execute_array env lar in let names' = Array.Smart.map_i (fun i na -> check_assumption env na lar'.(i) lart.(i)) names in let env1 = push_rec_types (names',lar',vdef) env in (* vdef is ignored *) let vdef', vdeft = execute_array env1 vdef in let () = check_fixpoint env1 names' lar' vdef' vdeft in let recdef = if names == names' && lar == lar' && vdef == vdef' then recdef else (names',lar',vdef') in (lar'.(i),recdef) and execute_array env cs = let tys = Array.make (Array.length cs) mkProp in let cs = Array.Smart.map_i (fun i c -> let c, ty = execute env c in tys.(i) <- ty; c) cs in cs, tys (* Derived functions *) let check_wellformed_universes env c = let univs = universes_of_constr c in try UGraph.check_declared_universes (universes env) univs with UGraph.UndeclaredLevel u -> error_undeclared_universe env u let infer env constr = let () = check_wellformed_universes env constr in let constr, t = execute env constr in make_judge constr t let infer = if Flags.profile then let infer_key = CProfile.declare_profile "Fast_infer" in CProfile.profile2 infer_key (fun b c -> infer b c) else (fun b c -> infer b c) let assumption_of_judgment env {uj_val=c; uj_type=t} = infer_assumption env c t let type_judgment env {uj_val=c; uj_type=t} = let s = check_type env c t in {utj_val = c; utj_type = s } let infer_type env constr = let () = check_wellformed_universes env constr in let constr, t = execute env constr in let s = check_type env constr t in {utj_val = constr; utj_type = s} (* Typing of several terms. *) let check_context env rels = let open Context.Rel.Declaration in Context.Rel.fold_outside (fun d (env,rels) -> match d with | LocalAssum (x,ty) -> let jty = infer_type env ty in let x = check_binder_annot jty.utj_type x in push_rel d env, LocalAssum (x,jty.utj_val) :: rels | LocalDef (x,bd,ty) -> let j1 = infer env bd in let jty = infer_type env ty in conv_leq false env j1.uj_type ty; let x = check_binder_annot jty.utj_type x in push_rel d env, LocalDef (x,j1.uj_val,jty.utj_val) :: rels) rels ~init:(env,[]) let judge_of_prop = make_judge mkProp type1 let judge_of_set = make_judge mkSet type1 let judge_of_type u = make_judge (mkType u) (type_of_type u) let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k) let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x) let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst) let judge_of_projection env p cj = make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type) let dest_judgev v = Array.map j_val v, Array.map j_type v let judge_of_apply env funj argjv = let args, argtys = dest_judgev argjv in make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys) (* let judge_of_abstraction env x varj bodyj = *) (* make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) *) (* (type_of_abstraction env x varj.utj_val bodyj.uj_type) *) (* let judge_of_product env x varj outj = *) (* make_judge (mkProd (x, varj.utj_val, outj.utj_val)) *) (* (mkSort (sort_of_product env varj.utj_type outj.utj_type)) *) (* let judge_of_letin env name defj typj j = *) (* make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) *) (* (subst1 defj.uj_val j.uj_type) *) let judge_of_cast env cj k tj = let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in make_judge c tj.utj_val let judge_of_inductive env indu = make_judge (mkIndU indu) (type_of_inductive env indu) let judge_of_constructor env cu = make_judge (mkConstructU cu) (type_of_constructor env cu) let judge_of_case env ci pj iv cj lfj = let lf, lft = dest_judgev lfj in let ci, t = type_of_case env ci pj.uj_val pj.uj_type iv cj.uj_val cj.uj_type lf lft in make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, iv, cj.uj_val, lft)) t (* Building type of primitive operators and type *) let type_of_prim_const env _u c = let int_ty () = type_of_int env in match c with | CPrimitives.Arraymaxlength -> int_ty () let type_of_prim env u t = let int_ty () = type_of_int env in let float_ty () = type_of_float env in let array_ty u a = mkApp(type_of_array env u, [|a|]) in let bool_ty () = match env.retroknowledge.Retroknowledge.retro_bool with | Some ((ind,_),_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type bool must be registered before this primitive.") in let compare_ty () = match env.retroknowledge.Retroknowledge.retro_cmp with | Some ((ind,_),_,_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type compare must be registered before this primitive.") in let f_compare_ty () = match env.retroknowledge.Retroknowledge.retro_f_cmp with | Some ((ind,_),_,_,_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type float_comparison must be registered before this primitive.") in let f_class_ty () = match env.retroknowledge.Retroknowledge.retro_f_class with | Some ((ind,_),_,_,_,_,_,_,_,_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type float_class must be registered before this primitive.") in let pair_ty fst_ty snd_ty = match env.retroknowledge.Retroknowledge.retro_pair with | Some (ind,_) -> Constr.mkApp(Constr.mkInd ind, [|fst_ty;snd_ty|]) | None -> CErrors.user_err Pp.(str"The type pair must be registered before this primitive.") in let carry_ty int_ty = match env.retroknowledge.Retroknowledge.retro_carry with | Some ((ind,_),_) -> Constr.mkApp(Constr.mkInd ind, [|int_ty|]) | None -> CErrors.user_err Pp.(str"The type carry must be registered before this primitive.") in let open CPrimitives in let tr_prim_type (tr_type : ind_or_type -> constr) (type a) (ty : a prim_type) (t : a) = match ty with | PT_int63 -> int_ty t | PT_float64 -> float_ty t | PT_array -> array_ty (fst t) (tr_type (snd t)) in let tr_ind (tr_type : ind_or_type -> constr) (type t) (i : t prim_ind) (a : t) = match i, a with | PIT_bool, () -> bool_ty () | PIT_carry, t -> carry_ty (tr_type t) | PIT_pair, (t1, t2) -> pair_ty (tr_type t1) (tr_type t2) | PIT_cmp, () -> compare_ty () | PIT_f_cmp, () -> f_compare_ty () | PIT_f_class, () -> f_class_ty () in let rec tr_type n = function | PITT_ind (i, a) -> tr_ind (tr_type n) i a | PITT_type (ty,t) -> tr_prim_type (tr_type n) ty t | PITT_param i -> Constr.mkRel (n+i) in let rec nary_op n = function | [] -> assert false | [ret_ty] -> tr_type n ret_ty | arg_ty :: r -> Constr.mkProd(Context.nameR (Id.of_string "x"), tr_type n arg_ty, nary_op (n+1) r) in let params, sign = types t in assert (AUContext.size (univs t) = Instance.length u); Vars.subst_instance_constr u (Term.it_mkProd_or_LetIn (nary_op 0 sign) params) let type_of_prim_or_type env u = let open CPrimitives in function | OT_type t -> type_of_prim_type env u t | OT_op op -> type_of_prim env u op | OT_const c -> type_of_prim_const env u c