(* $Id$ *) open Pp open Util open Names open Univ open Generic open Term open Constant open Inductive open Sign open Environ open Reduction open Instantiate open Type_errors let make_judge v tj = { uj_val = v; uj_type = tj.body; uj_kind= DOP0 (Sort tj.typ) } let j_val_only j = j.uj_val (* Faut-il caster ? *) let j_val = j_val_only let j_val_cast j = mkCast j.uj_val j.uj_type let typed_type_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_kind with | DOP0(Sort s) -> { body = j.uj_type; typ = s } | _ -> error_not_type CCI env j.uj_type let assumption_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_type with | DOP0(Sort s) -> { body = j.uj_val; typ = s } | _ -> error_assumption CCI env j.uj_val (* Type of a de Bruijn index. *) let relative env n = try let (_,typ) = lookup_rel n env in { uj_val = Rel n; uj_type = lift n typ.body; uj_kind = DOP0 (Sort typ.typ) } with Not_found -> error_unbound_rel CCI env n (* Management of context of variables. *) (* Checks if a context of variable is included in another one. *) let hyps_inclusion env sigma (idl1,tyl1) (idl2,tyl2) = let rec aux = function | ([], [], _, _) -> true | (_, _, [], []) -> false | ((id1::idl1), (ty1::tyl1), idl2, tyl2) -> let rec search = function | ([], []) -> false | ((id2::idl2), (ty2::tyl2)) -> if id1 = id2 then (is_conv env sigma (body_of_type ty1) (body_of_type ty2)) & aux (idl1,tyl1,idl2,tyl2) else search (idl2,tyl2) | (_, _) -> invalid_arg "hyps_inclusion" in search (idl2,tyl2) | (_, _, _, _) -> invalid_arg "hyps_inclusion" in aux (idl1,tyl1,idl2,tyl2) (* Checks if the given context of variables [hyps] is included in the current context of [env]. *) let construct_reference id env sigma hyps = let hyps' = get_globals (context env) in if hyps_inclusion env sigma hyps hyps' then Array.of_list (List.map (fun id -> VAR id) (ids_of_sign hyps)) else error_reference_variables CCI env id let check_hyps id env sigma hyps = let hyps' = get_globals (context env) in if not (hyps_inclusion env sigma hyps hyps') then error_reference_variables CCI env id (* Instantiation of terms on real arguments. *) let type_of_constant env sigma c = let (sp,args) = destConst c in let cb = lookup_constant sp env in let hyps = cb.const_hyps in check_hyps (basename sp) env sigma hyps; instantiate_type (ids_of_sign hyps) cb.const_type (Array.to_list args) (* Inductive types. *) let instantiate_arity mis = let ids = ids_of_sign mis.mis_mib.mind_hyps in let args = Array.to_list mis.mis_args in let arity = mis.mis_mip.mind_arity in { body = instantiate_constr ids arity.body args; typ = arity.typ } let type_of_inductive env sigma i = let mis = lookup_mind_specif i env in let hyps = mis.mis_mib.mind_hyps in check_hyps (basename mis.mis_sp) env sigma hyps; instantiate_arity mis (* Constructors. *) let instantiate_lc mis = let hyps = mis.mis_mib.mind_hyps in let lc = mis.mis_mip.mind_lc in instantiate_constr (ids_of_sign hyps) lc (Array.to_list mis.mis_args) let type_of_constructor env sigma c = let (sp,i,j,args) = destMutConstruct c in let mind = DOPN (MutInd (sp,i), args) in let recmind = check_mrectype_spec env sigma mind in let mis = lookup_mind_specif recmind env in check_hyps (basename mis.mis_sp) env sigma (mis.mis_mib.mind_hyps); let specif = instantiate_lc mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) in if j > mis_nconstr mis then anomaly "type_of_constructor" else sAPPViList (j-1) specif (list_tabulate make_ik (mis_ntypes mis)) (* gives the vector of constructors and of types of constructors of an inductive definition correctly instanciated *) let mis_type_mconstructs mis = let specif = instantiate_lc mis and ntypes = mis_ntypes mis and nconstr = mis_nconstr mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) and make_ck k = DOPN (MutConstruct ((mis.mis_sp,mis.mis_tyi),k+1), mis.mis_args) in (Array.init nconstr make_ck, sAPPVList specif (list_tabulate make_ik ntypes)) let type_mconstructs env sigma mind = let redmind = check_mrectype_spec env sigma mind in let mis = lookup_mind_specif redmind env in mis_type_mconstructs mis let mis_type_mconstruct i mispec = let specif = instantiate_lc mispec and ntypes = mis_ntypes mispec and nconstr = mis_nconstr mispec in let make_Ik k = DOPN(MutInd(mispec.mis_sp,k),mispec.mis_args) in if i > nconstr then error "Not enough constructors in the type"; sAPPViList (i-1) specif (list_tabulate make_Ik ntypes) let type_mconstruct env sigma i mind = let redmind = check_mrectype_spec env sigma mind in let (sp,tyi,args) = destMutInd redmind in let mispec = lookup_mind_specif redmind env in mis_type_mconstruct i mispec let type_inst_construct env sigma i mind = try let (mI,largs) = find_mrectype env sigma mind in let mispec = lookup_mind_specif mI env in let nparams = mis_nparams mispec in let tc = mis_type_mconstruct i mispec in let (globargs,_) = list_chop nparams largs in hnf_prod_applist env sigma "Typing.type_construct" tc globargs with Induc -> error_not_inductive CCI env mind (* Case. *) let rec sort_of_arity env sigma c = match whd_betadeltaiota env sigma c with | DOP0(Sort( _)) as c' -> c' | DOP2(Prod,_,DLAM(_,c2)) -> sort_of_arity env sigma c2 | _ -> invalid_arg "sort_of_arity" let make_arity_dep env sigma k = let rec mrec c m = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> mkArrow m k | DOP2(Prod,b,DLAM(n,c_0)) -> prod_name env (n,b,mrec c_0 (applist(lift 1 m,[Rel 1]))) | _ -> invalid_arg "make_arity_dep" in mrec let make_arity_nodep env sigma k = let rec mrec c = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> k | DOP2(Prod,b,DLAM(x,c_0)) -> DOP2(Prod,b,DLAM(x,mrec c_0)) | _ -> invalid_arg "make_arity_nodep" in mrec let error_elim_expln env sigma kp ki = if is_info_sort env sigma kp && not (is_info_sort env sigma ki) then "non-informative objects may not construct informative ones." else match (kp,ki) with | (DOP0(Sort (Type _)), DOP0(Sort (Prop _))) -> "strong elimination on non-small inductive types leads to paradoxes." | _ -> "wrong arity" exception Arity of (constr * constr * string) option let is_correct_arity env sigma kelim (c,p) = let rec srec ind (pt,t) = try (match whd_betadeltaiota env sigma pt, whd_betadeltaiota env sigma t with | DOP2(Prod,a1,DLAM(_,a2)), DOP2(Prod,a1',DLAM(_,a2')) -> if is_conv env sigma a1 a1' then srec (applist(lift 1 ind,[Rel 1])) (a2,a2') else raise (Arity None) | DOP2(Prod,a1,DLAM(_,a2)), ki -> let k = whd_betadeltaiota env sigma a2 in let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if is_conv env sigma a1 ind then if List.exists (base_sort_cmp CONV ksort) kelim then (true,k) else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki))) else raise (Arity None) | k, DOP2(Prod,_,_) -> raise (Arity None) | k, ki -> let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if List.exists (base_sort_cmp CONV ksort) kelim then false,k else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki)))) with Arity kinds -> let listarity = (List.map (fun s -> make_arity_dep env sigma (DOP0(Sort s)) t ind) kelim) @(List.map (fun s -> make_arity_nodep env sigma (DOP0(Sort s)) t) kelim) in error_elim_arity CCI env ind listarity c p pt kinds in srec let cast_instantiate_arity mis = let tty = instantiate_arity mis in DOP2 (Cast, tty.body, DOP0 (Sort tty.typ)) let find_case_dep_nparams env sigma (c,p) (mind,largs) typP = let mis = lookup_mind_specif mind env in let nparams = mis_nparams mis and kelim = mis_kelim mis and t = cast_instantiate_arity mis in let (globargs,la) = list_chop nparams largs in let glob_t = hnf_prod_applist env sigma "find_elim_boolean" t globargs in let arity = applist(mind,globargs) in let (dep,_) = is_correct_arity env sigma kelim (c,p) arity (typP,glob_t) in (dep, (nparams, globargs,la)) let type_one_branch_dep env sigma (nparams,globargs,p) co t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> prod_name env (x,a1,typrec (n+1) a2) | x -> let lAV = destAppL (ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in applist (appvect ((lift n p),vargs), [applist(co,((List.map (lift n) globargs)@(rel_list 0 n)))]) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) let type_one_branch_nodep env sigma (nparams,globargs,p) t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> DOP2(Prod,a1,DLAM(x,typrec (n+1) a2)) | x -> let lAV = destAppL(ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in appvect (lift n p,vargs) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) (* type_case_branches type un
Case c of ... end
ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc
pt = sorte de p
type_case_branches retourne (lb, lr); lb est le vecteur des types
attendus dans les branches du Case; lr est le type attendu du resultat
*)
let type_case_branches env sigma ct pt p c =
try
let ((mI,largs) as indt) = find_mrectype env sigma ct in
let (dep,(nparams,globargs,la)) =
find_case_dep_nparams env sigma (c,p) indt pt
in
let (lconstruct,ltypconstr) = type_mconstructs env sigma mI in
if dep then
(mI,
array_map2 (type_one_branch_dep env sigma (nparams,globargs,p))
lconstruct ltypconstr,
beta_applist (p,(la@[c])))
else
(mI,
Array.map (type_one_branch_nodep env sigma (nparams,globargs,p))
ltypconstr,
beta_applist (p,la))
with Induc ->
error_case_not_inductive CCI env c ct
let check_branches_message env sigma (c,ct) (explft,lft) =
let n = Array.length explft
and expn = Array.length lft in
if n<>expn then error_number_branches CCI env c ct expn;
for i = 0 to n-1 do
if not (is_conv_leq env sigma lft.(i) (explft.(i))) then
error_ill_formed_branch CCI env c i (nf_betaiota env sigma lft.(i))
(nf_betaiota env sigma explft.(i))
done
let type_of_case env sigma pj cj lfj =
let lft = Array.map (fun j -> j.uj_type) lfj in
let (mind,bty,rslty) =
type_case_branches env sigma cj.uj_type pj.uj_type pj.uj_val cj.uj_val in
let kind = sort_of_arity env sigma pj.uj_type in
check_branches_message env sigma (cj.uj_val,cj.uj_type) (bty,lft);
{ uj_val =
mkMutCaseA (ci_of_mind mind) (j_val pj) (j_val cj) (Array.map j_val lfj);
uj_type = rslty;
uj_kind = kind }
(* Prop and Set *)
let type_of_prop_or_set cts =
{ uj_val = DOP0(Sort(Prop cts));
uj_type = DOP0(Sort type_0);
uj_kind = DOP0(Sort type_1) }
(* Type of Type(i). *)
let type_of_type u =
let (uu,uuu,c) = super_super u in
{ uj_val = DOP0 (Sort (Type u));
uj_type = DOP0 (Sort (Type uu));
uj_kind = DOP0 (Sort (Type uuu)) },
c
let type_of_sort c =
match c with
| DOP0 (Sort (Type u)) -> let (uu,cst) = super u in mkType uu, cst
| DOP0 (Sort (Prop _)) -> mkType prop_univ, Constraint.empty
| _ -> invalid_arg "type_of_sort"
(* Type of a lambda-abstraction. *)
let sort_of_product domsort rangsort g =
match rangsort with
(* Product rule (s,Prop,Prop) *)
| Prop _ -> rangsort, Constraint.empty
| Type u2 ->
(match domsort with
(* Product rule (Prop,Type_i,Type_i) *)
| Prop _ -> rangsort, Constraint.empty
(* Product rule (Type_i,Type_i,Type_i) *)
| Type u1 -> let (u12,cst) = sup u1 u2 g in Type u12, cst)
let abs_rel env sigma name var j =
let rngtyp = whd_betadeltaiota env sigma j.uj_kind in
let cvar = incast_type var in
let (s,cst) = sort_of_product var.typ (destSort rngtyp) (universes env) in
{ uj_val = mkLambda name cvar (j_val j);
uj_type = mkProd name cvar j.uj_type;
uj_kind = mkSort s },
cst
(* Type of a product. *)
let gen_rel env sigma name var j =
let jtyp = whd_betadeltaiota env sigma j.uj_type in
let jkind = whd_betadeltaiota env sigma j.uj_kind in
let j = { uj_val = j.uj_val; uj_type = jtyp; uj_kind = jkind } in
if isprop jkind then
error "Proof objects can only be abstracted"
else
match jtyp with
| DOP0(Sort s) ->
let (s',g) = sort_of_product var.typ s (universes env) in
let res_type = mkSort s' in
let (res_kind,g') = type_of_sort res_type in
{ uj_val =
mkProd name (mkCast var.body (mkSort var.typ)) (j_val_cast j);
uj_type = res_type;
uj_kind = res_kind }, g'
| _ ->
error_generalization CCI env (name,var) j.uj_val
(* Type of a cast. *)
let cast_rel env sigma cj tj =
if is_conv_leq env sigma cj.uj_type tj.uj_val then
{ uj_val = j_val_only cj;
uj_type = tj.uj_val;
uj_kind = whd_betadeltaiota env sigma tj.uj_type }
else
error_actual_type CCI env cj.uj_val cj.uj_type tj.uj_val
(* Type of an application. *)
let apply_rel_list env sigma nocheck argjl funj =
let rec apply_rec typ cst = function
| [] ->
{ uj_val = applist (j_val_only funj, List.map j_val_only argjl);
uj_type = typ;
uj_kind = funj.uj_kind },
cst
| hj::restjl ->
match whd_betadeltaiota env sigma typ with
| DOP2(Prod,c1,DLAM(_,c2)) ->
if nocheck then
apply_rec (subst1 hj.uj_val c2) cst restjl
else
(try
let c = conv_leq env sigma hj.uj_type c1 in
let cst' = Constraint.union cst c in
apply_rec (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply CCI env "Type Error" funj argjl)
| _ ->
error_cant_apply CCI env "Non-functional construction" funj argjl
in
apply_rec funj.uj_type Constraint.empty argjl
(* Fixpoints. *)
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
let noccur_with_meta lc n m term =
let rec occur_rec n = function
| Rel p -> if n<=p & p