(* $Id$ *) open Pp open Util open Names open Univ open Generic open Term open Constant open Inductive open Sign open Environ open Reduction open Instantiate open Type_errors let make_judge v tj = { uj_val = v; uj_type = tj.body; uj_kind= DOP0 (Sort tj.typ) } let j_val_only j = j.uj_val (* Faut-il caster ? *) let j_val = j_val_only let j_val_cast j = mkCast j.uj_val j.uj_type let typed_type_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_kind with | DOP0(Sort s) -> { body = j.uj_type; typ = s } | _ -> error_not_type CCI env j.uj_type let assumption_of_judgment env sigma j = match whd_betadeltaiota env sigma j.uj_type with | DOP0(Sort s) -> { body = j.uj_val; typ = s } | _ -> error_assumption CCI env j.uj_val (* Type of a de Bruijn index. *) let relative env n = try let (_,typ) = lookup_rel n env in { uj_val = Rel n; uj_type = lift n typ.body; uj_kind = DOP0 (Sort typ.typ) } with Not_found -> error_unbound_rel CCI env n (* Management of context of variables. *) (* Checks if a context of variable is included in another one. *) let rec hyps_inclusion env sigma sign1 sign2 = if isnull_sign sign1 then true else let (id1,ty1) = hd_sign sign1 in let rec search sign2 = if isnull_sign sign2 then false else let (id2,ty2) = hd_sign sign2 in if id1 = id2 then (is_conv env sigma (body_of_type ty1) (body_of_type ty2)) & hyps_inclusion env sigma (tl_sign sign1) (tl_sign sign2) else search (tl_sign sign2) in search sign2 (* Checks if the given context of variables [hyps] is included in the current context of [env]. *) let check_hyps id env sigma hyps = let hyps' = var_context env in if not (hyps_inclusion env sigma hyps hyps') then error_reference_variables CCI env id (* Instantiation of terms on real arguments. *) let type_of_constant env sigma (sp,args) = let cb = lookup_constant sp env in let hyps = cb.const_hyps in (* TODO: check args *) instantiate_type (ids_of_sign hyps) cb.const_type (Array.to_list args) (* Inductive types. *) (* Q: A faire disparaitre ?? let instantiate_arity mis = let ids = ids_of_sign mis.mis_mib.mind_hyps in let args = Array.to_list mis.mis_args in let arity = mis.mis_mip.mind_arity in { body = instantiate_constr ids arity.body args; typ = arity.typ } *) let instantiate_arity = Instantiate.mis_typed_arity let type_of_inductive env sigma i = let mis = lookup_mind_specif i env in let hyps = mis.mis_mib.mind_hyps in (* TODO: check args *) instantiate_arity mis (* Constructors. *) (* let instantiate_lc mis = let hyps = mis.mis_mib.mind_hyps in let lc = mis.mis_mip.mind_lc in instantiate_constr (ids_of_sign hyps) lc (Array.to_list mis.mis_args) *) let instantiate_lc = Instantiate.mis_lc let type_of_constructor env sigma ((ind_sp,j),args as cstr) = let mind = inductive_of_constructor cstr in let mis = lookup_mind_specif mind env in (* TODO: check args *) let specif = instantiate_lc mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) in if j > mis_nconstr mis then anomaly "type_of_constructor" else sAPPViList (j-1) specif (list_tabulate make_ik (mis_ntypes mis)) (* gives the vector of constructors and of types of constructors of an inductive definition correctly instanciated *) let mis_type_mconstructs mis = let specif = instantiate_lc mis and ntypes = mis_ntypes mis and nconstr = mis_nconstr mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) and make_ck k = DOPN (MutConstruct ((mis.mis_sp,mis.mis_tyi),k+1), mis.mis_args) in (Array.init nconstr make_ck, sAPPVList specif (list_tabulate make_ik ntypes)) let type_mconstructs env sigma mind = let mis = lookup_mind_specif mind env in mis_type_mconstructs mis let mis_type_mconstruct i mispec = let specif = instantiate_lc mispec and ntypes = mis_ntypes mispec and nconstr = mis_nconstr mispec in let make_Ik k = DOPN(MutInd(mispec.mis_sp,k),mispec.mis_args) in if i > nconstr then error "Not enough constructors in the type"; sAPPViList (i-1) specif (list_tabulate make_Ik ntypes) let type_mconstruct env sigma i mind = let mis = lookup_mind_specif mind env in mis_type_mconstruct i mis let type_inst_construct env sigma i (mind,globargs) = let mis = lookup_mind_specif mind env in let tc = mis_type_mconstruct i mis in hnf_prod_applist env sigma "Typing.type_construct" tc globargs let type_of_existential env sigma c = let (ev,args) = destEvar c in let evi = Evd.map sigma ev in let hyps = var_context evi.Evd.evar_env in let id = id_of_string ("?" ^ string_of_int ev) in (* TODO: check args *) instantiate_constr (ids_of_sign hyps) evi.Evd.evar_concl (Array.to_list args) (* Case. *) let rec sort_of_arity env sigma c = match whd_betadeltaiota env sigma c with | DOP0(Sort( _)) as c' -> c' | DOP2(Prod,_,DLAM(_,c2)) -> sort_of_arity env sigma c2 | _ -> invalid_arg "sort_of_arity" let make_arity_dep env sigma k = let rec mrec c m = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> mkArrow m k | DOP2(Prod,b,DLAM(n,c_0)) -> prod_name env (n,b,mrec c_0 (applist(lift 1 m,[Rel 1]))) | _ -> invalid_arg "make_arity_dep" in mrec let make_arity_nodep env sigma k = let rec mrec c = match whd_betadeltaiota env sigma c with | DOP0(Sort _) -> k | DOP2(Prod,b,DLAM(x,c_0)) -> DOP2(Prod,b,DLAM(x,mrec c_0)) | _ -> invalid_arg "make_arity_nodep" in mrec let error_elim_expln env sigma kp ki = if is_info_sort env sigma kp && not (is_info_sort env sigma ki) then "non-informative objects may not construct informative ones." else match (kp,ki) with | (DOP0(Sort (Type _)), DOP0(Sort (Prop _))) -> "strong elimination on non-small inductive types leads to paradoxes." | _ -> "wrong arity" exception Arity of (constr * constr * string) option let is_correct_arity env sigma kelim (c,p) = let rec srec ind (pt,t) = try (match whd_betadeltaiota env sigma pt, whd_betadeltaiota env sigma t with | DOP2(Prod,a1,DLAM(_,a2)), DOP2(Prod,a1',DLAM(_,a2')) -> if is_conv env sigma a1 a1' then srec (applist(lift 1 ind,[Rel 1])) (a2,a2') else raise (Arity None) | DOP2(Prod,a1,DLAM(_,a2)), ki -> let k = whd_betadeltaiota env sigma a2 in let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if is_conv env sigma a1 ind then if List.exists (base_sort_cmp CONV ksort) kelim then (true,k) else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki))) else raise (Arity None) | k, DOP2(Prod,_,_) -> raise (Arity None) | k, ki -> let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if List.exists (base_sort_cmp CONV ksort) kelim then false,k else raise (Arity (Some(k,ki,error_elim_expln env sigma k ki)))) with Arity kinds -> let listarity = (List.map (fun s -> make_arity_dep env sigma (DOP0(Sort s)) t ind) kelim) @(List.map (fun s -> make_arity_nodep env sigma (DOP0(Sort s)) t) kelim) in error_elim_arity CCI env ind listarity c p pt kinds in srec let find_case_dep_nparams env sigma (c,p) (mind,largs) typP = let mis = lookup_mind_specif mind env in let nparams = mis_nparams mis and kelim = mis_kelim mis and t = body_of_type (instantiate_arity mis) in let (globargs,la) = list_chop nparams largs in let glob_t = hnf_prod_applist env sigma "find_elim_boolean" t globargs in let arity = applist(mkMutInd mind,globargs) in let (dep,_) = is_correct_arity env sigma kelim (c,p) arity (typP,glob_t) in (dep, (nparams, globargs,la)) let type_one_branch_dep env sigma (nparams,globargs,p) co t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> prod_name env (x,a1,typrec (n+1) a2) | x -> let lAV = destAppL (ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in applist (appvect ((lift n p),vargs), [applist(co,((List.map (lift n) globargs)@(rel_list 0 n)))]) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) let type_one_branch_nodep env sigma (nparams,globargs,p) t = let rec typrec n c = match whd_betadeltaiota env sigma c with | DOP2(Prod,a1,DLAM(x,a2)) -> DOP2(Prod,a1,DLAM(x,typrec (n+1) a2)) | x -> let lAV = destAppL(ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in appvect (lift n p,vargs) in typrec 0 (hnf_prod_applist env sigma "type_case" t globargs) (* type_case_branches type un

Case c of ... end ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc pt = sorte de p type_case_branches retourne (lb, lr); lb est le vecteur des types attendus dans les branches du Case; lr est le type attendu du resultat *) let type_case_branches env sigma ct pt p c = try let (mind,largs) = find_mrectype env sigma ct in let (dep,(nparams,globargs,la)) = find_case_dep_nparams env sigma (c,p) (mind,largs) pt in let (lconstruct,ltypconstr) = type_mconstructs env sigma mind in let mI = mkMutInd mind in if dep then (mI, array_map2 (type_one_branch_dep env sigma (nparams,globargs,p)) lconstruct ltypconstr, beta_applist (p,(la@[c]))) else (mI, Array.map (type_one_branch_nodep env sigma (nparams,globargs,p)) ltypconstr, beta_applist (p,la)) with Induc -> error_case_not_inductive CCI env c ct let check_branches_message env sigma (c,ct) (explft,lft) = let n = Array.length explft and expn = Array.length lft in if n<>expn then error_number_branches CCI env c ct expn; for i = 0 to n-1 do if not (is_conv_leq env sigma lft.(i) (explft.(i))) then error_ill_formed_branch CCI env c i (nf_betaiota env sigma lft.(i)) (nf_betaiota env sigma explft.(i)) done let type_of_case env sigma pj cj lfj = let lft = Array.map (fun j -> j.uj_type) lfj in let (mind,bty,rslty) = type_case_branches env sigma cj.uj_type pj.uj_type pj.uj_val cj.uj_val in let kind = sort_of_arity env sigma pj.uj_type in check_branches_message env sigma (cj.uj_val,cj.uj_type) (bty,lft); { uj_val = mkMutCaseA (ci_of_mind mind) (j_val pj) (j_val cj) (Array.map j_val lfj); uj_type = rslty; uj_kind = kind } (* Prop and Set *) let judge_of_prop = { uj_val = DOP0(Sort prop); uj_type = DOP0(Sort type_0); uj_kind = DOP0(Sort type_1) } let judge_of_set = { uj_val = DOP0(Sort spec); uj_type = DOP0(Sort type_0); uj_kind = DOP0(Sort type_1) } let judge_of_prop_contents = function | Null -> judge_of_prop | Pos -> judge_of_set (* Type of Type(i). *) let judge_of_type u = let (uu,uuu,c) = super_super u in { uj_val = DOP0 (Sort (Type u)); uj_type = DOP0 (Sort (Type uu)); uj_kind = DOP0 (Sort (Type uuu)) }, c let type_of_sort c = match c with | DOP0 (Sort (Type u)) -> let (uu,cst) = super u in mkType uu, cst | DOP0 (Sort (Prop _)) -> mkType prop_univ, Constraint.empty | _ -> invalid_arg "type_of_sort" (* Type of a lambda-abstraction. *) let sort_of_product domsort rangsort g = match rangsort with (* Product rule (s,Prop,Prop) *) | Prop _ -> rangsort, Constraint.empty | Type u2 -> (match domsort with (* Product rule (Prop,Type_i,Type_i) *) | Prop _ -> rangsort, Constraint.empty (* Product rule (Type_i,Type_i,Type_i) *) | Type u1 -> let (u12,cst) = sup u1 u2 g in Type u12, cst) let sort_of_product_without_univ domsort rangsort = match rangsort with | Prop _ -> rangsort | Type u2 -> (match domsort with | Prop _ -> rangsort | Type u1 -> Type dummy_univ) let abs_rel env sigma name var j = let rngtyp = whd_betadeltaiota env sigma j.uj_kind in let cvar = incast_type var in let (s,cst) = sort_of_product var.typ (destSort rngtyp) (universes env) in { uj_val = mkLambda name cvar (j_val j); uj_type = mkProd name cvar j.uj_type; uj_kind = mkSort s }, cst (* Type of a product. *) let gen_rel env sigma name var j = let jtyp = whd_betadeltaiota env sigma j.uj_type in let jkind = whd_betadeltaiota env sigma j.uj_kind in let j = { uj_val = j.uj_val; uj_type = jtyp; uj_kind = jkind } in if isprop jkind then error "Proof objects can only be abstracted" else match jtyp with | DOP0(Sort s) -> let (s',g) = sort_of_product var.typ s (universes env) in let res_type = mkSort s' in let (res_kind,g') = type_of_sort res_type in { uj_val = mkProd name (mkCast var.body (mkSort var.typ)) (j_val_cast j); uj_type = res_type; uj_kind = res_kind }, g' | _ -> error_generalization CCI env (name,var) j.uj_val (* Type of a cast. *) let cast_rel env sigma cj tj = if is_conv_leq env sigma cj.uj_type tj.uj_val then { uj_val = j_val_only cj; uj_type = tj.uj_val; uj_kind = whd_betadeltaiota env sigma tj.uj_type } else error_actual_type CCI env cj.uj_val cj.uj_type tj.uj_val (* Type of an application. *) let apply_rel_list env sigma nocheck argjl funj = let rec apply_rec typ cst = function | [] -> { uj_val = applist (j_val_only funj, List.map j_val_only argjl); uj_type = typ; uj_kind = funj.uj_kind }, cst | hj::restjl -> match whd_betadeltaiota env sigma typ with | DOP2(Prod,c1,DLAM(_,c2)) -> if nocheck then apply_rec (subst1 hj.uj_val c2) cst restjl else (try let c = conv_leq env sigma hj.uj_type c1 in let cst' = Constraint.union cst c in apply_rec (subst1 hj.uj_val c2) cst' restjl with NotConvertible -> error_cant_apply CCI env "Type Error" funj argjl) | _ -> error_cant_apply CCI env "Non-functional construction" funj argjl in apply_rec funj.uj_type Constraint.empty argjl (* Fixpoints. *) (* Checking function for terms containing existential variables. The function [noccur_with_meta] considers the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let noccur_with_meta n m term = let rec occur_rec n = function | Rel p -> if n<=p & p () | DOPN(AppL,cl) -> (match strip_outer_cast cl.(0) with | DOP0 (Meta _) -> () | _ -> Array.iter (occur_rec n) cl) | DOPN(Evar _, _) -> () | DOPN(op,cl) -> Array.iter (occur_rec n) cl | DOPL(_,cl) -> List.iter (occur_rec n) cl | DOP0(_) -> () | DOP1(_,c) -> occur_rec n c | DOP2(_,c1,c2) -> occur_rec n c1; occur_rec n c2 | DLAM(_,c) -> occur_rec (n+1) c | DLAMV(_,v) -> Array.iter (occur_rec (n+1)) v in try (occur_rec n term; true) with Occur -> false (* Check if t is a subterm of Rel n, and gives its specification, assuming lst already gives index of subterms with corresponding specifications of recursive arguments *) (* A powerful notion of subterm *) let find_sorted_assoc p = let rec findrec = function | (a,ta)::l -> if a < p then findrec l else if a = p then ta else raise Not_found | _ -> raise Not_found in findrec let map_lift_fst_n m = List.map (function (n,t)->(n+m,t)) let map_lift_fst = map_lift_fst_n 1 let rec instantiate_recarg sp lrc ra = match ra with | Mrec(j) -> Imbr((sp,j),lrc) | Imbr(ind_sp,l) -> Imbr(ind_sp, List.map (instantiate_recarg sp lrc) l) | Norec -> Norec | Param(k) -> List.nth lrc k (* propagate checking for F,incorporating recursive arguments *) let check_term env mind_recvec f = let rec crec n l (lrec,c) = match (lrec,strip_outer_cast c) with | (Param(_)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) l' (lr,b) | (Norec::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) l' (lr,b) | (Mrec(i)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) ((1,mind_recvec.(i))::l') (lr,b) | (Imbr((sp,i) as ind_sp,lrc)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in let sprecargs = mis_recargs (lookup_mind_specif (ind_sp,[||]) env) in let lc = Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i) in crec (n+1) ((1,lc)::l') (lr,b) | _,f_0 -> f n l f_0 in crec let is_inst_var env sigma k c = match whd_betadeltaiota_stack env sigma c [] with | (Rel n,_) -> n=k | _ -> false let is_subterm_specif env sigma lcx mind_recvec = let rec crec n lst c = match whd_betadeltaiota_stack env sigma c [] with | ((Rel k),_) -> find_sorted_assoc k lst | (DOPN(MutCase _,_) as x,_) -> let ( _,_,c,br) = destCase x in if Array.length br = 0 then [||] else let lcv = (try if is_inst_var env sigma n c then lcx else (crec n lst c) with Not_found -> (Array.create (Array.length br) [])) in assert (Array.length br = Array.length lcv); let stl = array_map2 (fun lc a -> check_term env mind_recvec crec n lst (lc,a)) lcv br in stl.(0) | (DOPN(Fix(_),la) as mc,l) -> let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in let nbfix = List.length funnames in let decrArg = recindxs.(i) in let theBody = bodies.(i) in let (gamma,strippedBody) = decompose_lam_n (decrArg+1) theBody in let absTypes = List.map snd gamma in let nbOfAbst = nbfix+decrArg+1 in let newlst = if List.length l < (decrArg+1) then ((nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst)) else let theDecrArg = List.nth l decrArg in let recArgsDecrArg = try (crec n lst theDecrArg) with Not_found -> Array.create 0 [] in if (Array.length recArgsDecrArg)=0 then (nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst) else (1,recArgsDecrArg) :: (nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst) in crec (n+nbOfAbst) newlst strippedBody | (DOP2(Lambda,_,DLAM(_,b)),[]) -> let lst' = map_lift_fst lst in crec (n+1) lst' b (*** Experimental change *************************) | (DOP0(Meta _),_) -> [||] | _ -> raise Not_found in crec let is_subterm env sigma lcx mind_recvec n lst c = try let _ = is_subterm_specif env sigma lcx mind_recvec n lst c in true with Not_found -> false (* Auxiliary function: it checks a condition f depending on a deBrujin index for a certain number of abstractions *) let rec check_subterm_rec_meta env sigma vectn k def = (k < 0) or (let nfi = Array.length vectn in (* check fi does not appear in the k+1 first abstractions, gives the type of the k+1-eme abstraction *) let rec check_occur n def = (match strip_outer_cast def with | DOP2(Lambda,a,DLAM(_,b)) -> if noccur_with_meta n nfi a then if n = k+1 then (a,b) else check_occur (n+1) b else error "Bad occurrence of recursive call" | _ -> error "Not enough abstractions in the definition") in let (c,d) = check_occur 1 def in let ((sp,tyi),_ as mind, largs) = (try find_minductype env sigma c with Induc -> error "Recursive definition on a non inductive type") in let mind_recvec = mis_recargs (lookup_mind_specif mind env) in let lcx = mind_recvec.(tyi) in (* n = decreasing argument in the definition; lst = a mapping var |-> recargs t = the term to be checked *) let rec check_rec_call n lst t = (* n gives the index of the recursive variable *) (noccur_with_meta (n+k+1) nfi t) or (* no recursive call in the term *) (match whd_betadeltaiota_stack env sigma t [] with | (Rel p,l) -> if n+k+1 <= p & p < n+k+nfi+1 then (* recursive call *) let glob = nfi+n+k-p in (* the index of the recursive call *) let np = vectn.(glob) in (* the decreasing arg of the rec call *) if List.length l > np then (match list_chop np l with (la,(z::lrest)) -> if (is_subterm env sigma lcx mind_recvec n lst z) then List.for_all (check_rec_call n lst) (la@lrest) else error "Recursive call applied to an illegal term" | _ -> assert false) else error "Not enough arguments for the recursive call" else List.for_all (check_rec_call n lst) l | (DOPN(MutCase _,_) as mc,l) -> let (ci,p,c_0,lrest) = destCase mc in let lc = (try if is_inst_var env sigma n c_0 then lcx else is_subterm_specif env sigma lcx mind_recvec n lst c_0 with Not_found -> Array.create (Array.length lrest) []) in (array_for_all2 (fun c_0 a -> check_term env mind_recvec (check_rec_call) n lst (c_0,a)) lc lrest) && (List.for_all (check_rec_call n lst) (c_0::p::l)) (* Enables to traverse Fixpoint definitions in a more intelligent way, ie, the rule : if - g = Fix g/1 := [y1:T1]...[yp:Tp]e & - f is guarded with respect to the set of pattern variables S in a1 ... am & - f is guarded with respect to the set of pattern variables S in T1 ... Tp & - ap is a sub-term of the formal argument of f & - f is guarded with respect to the set of pattern variables S+{yp} in e then f is guarded with respect to S in (g a1 ... am). Eduardo 7/9/98 *) | (DOPN(Fix(_),la) as mc,l) -> (List.for_all (check_rec_call n lst) l) && let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in let nbfix = List.length funnames in let decrArg = recindxs.(i) in if (List.length l < (decrArg+1)) then (array_for_all (check_rec_call n lst) la) else let theDecrArg = List.nth l decrArg in let recArgsDecrArg = try is_subterm_specif env sigma lcx mind_recvec n lst theDecrArg with Not_found -> Array.create 0 [] in if (Array.length recArgsDecrArg)=0 then array_for_all (check_rec_call n lst) la else let theBody = bodies.(i) in let (gamma,strippedBody) = decompose_lam_n (decrArg+1) theBody in let absTypes = List.map snd gamma in let nbOfAbst = nbfix+decrArg+1 in let newlst = ((1,recArgsDecrArg)::(map_lift_fst_n nbOfAbst lst)) in ((array_for_all (fun t -> check_rec_call n lst t) typarray) && (list_for_all_i (fun n -> check_rec_call n lst) n absTypes) & (check_rec_call (n+nbOfAbst) newlst strippedBody)) | (DOP2(_,a,b),l) -> (check_rec_call n lst a) && (check_rec_call n lst b) && (List.for_all (check_rec_call n lst) l) | (DOPN(_,la),l) -> (array_for_all (check_rec_call n lst) la) && (List.for_all (check_rec_call n lst) l) | (DOP0 (Meta _),l) -> true | (DLAM(_,t),l) -> (check_rec_call (n+1) (map_lift_fst lst) t) && (List.for_all (check_rec_call n lst) l) | (DLAMV(_,vt),l) -> (array_for_all (check_rec_call (n+1) (map_lift_fst lst)) vt) && (List.for_all (check_rec_call n lst) l) | (_,l) -> List.for_all (check_rec_call n lst) l ) in check_rec_call 1 [] d) (* vargs is supposed to be built from A1;..Ak;[f1]..[fk][|d1;..;dk|] and vdeft is [|t1;..;tk|] such that f1:A1,..,fk:Ak |- di:ti nvect is [|n1;..;nk|] which gives for each recursive definition the inductive-decreasing index the function checks the convertibility of ti with Ai *) let check_fix env sigma = function | DOPN(Fix(nvect,j),vargs) -> let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let ln = Array.length nvect and la = Array.length varit in if ln <> la then error "Ill-formed fix term" else let (lna,vdefs) = decomp_DLAMV_name ln ldef in let vlna = Array.of_list lna in let check_type i = try let _ = check_subterm_rec_meta env sigma nvect nvect.(i) vdefs.(i) in () with UserError (s,str) -> error_ill_formed_rec_body CCI env str lna i vdefs in for i = 0 to ln-1 do check_type i done | _ -> assert false (* Co-fixpoints. *) let mind_nparams env i = let mis = lookup_mind_specif i env in mis.mis_mib.mind_nparams let check_guard_rec_meta env sigma nbfix def deftype = let rec codomain_is_coind c = match whd_betadeltaiota env sigma (strip_outer_cast c) with | DOP2(Prod,a,DLAM(_,b)) -> codomain_is_coind b | b -> (try find_mcoinductype env sigma b with | Induc -> error "The codomain is not a coinductive type" (* | _ -> error "Type of Cofix function not as expected") ??? *) ) in let (mind, _) = codomain_is_coind deftype in let ((sp,tyi),_) = mind in let lvlra = (mis_recargs (lookup_mind_specif mind env)) in let vlra = lvlra.(tyi) in let rec check_rec_call alreadygrd n vlra t = if noccur_with_meta n nbfix t then true else match whd_betadeltaiota_stack env sigma t [] with | (DOP0 (Meta _), l) -> true | (Rel p,l) -> if n <= p && p < n+nbfix then (* recursive call *) if alreadygrd then if List.for_all (noccur_with_meta n nbfix) l then true else error "Nested recursive occurrences" else error "Unguarded recursive call" else error "check_guard_rec_meta: ???" | (DOPN (MutConstruct(_,i as cstr_sp),l), args) -> let lra =vlra.(i-1) in let mI = inductive_of_constructor (cstr_sp,l) in let _,realargs = list_chop (mind_nparams env mI) args in let rec process_args_of_constr l lra = match l with | [] -> true | t::lr -> (match lra with | [] -> anomalylabstrm "check_guard_rec_meta" [< 'sTR "a constructor with an empty list"; 'sTR "of recargs is being applied" >] | (Mrec i)::lrar -> let newvlra = lvlra.(i) in (check_rec_call true n newvlra t) && (process_args_of_constr lr lrar) | (Imbr((sp,i) as ind_sp,lrc)::lrar) -> let mis = lookup_mind_specif (ind_sp,[||]) env in let sprecargs = mis_recargs mis in let lc = (Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i)) in (check_rec_call true n lc t) & (process_args_of_constr lr lrar) | _::lrar -> if (noccur_with_meta n nbfix t) then (process_args_of_constr lr lrar) else error "Recursive call inside a non-recursive argument of constructor") in (process_args_of_constr realargs lra) | (DOP2(Lambda,a,DLAM(_,b)),[]) -> if (noccur_with_meta n nbfix a) then check_rec_call alreadygrd (n+1) vlra b else error "Recursive call in the type of an abstraction" | (DOPN(CoFix(j),vargs),l) -> if (List.for_all (noccur_with_meta n nbfix) l) then let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let la = Array.length varit in let (lna,vdefs) = decomp_DLAMV_name la ldef in let vlna = Array.of_list lna in if (array_for_all (noccur_with_meta n nbfix) varit) then (array_for_all (check_rec_call alreadygrd (n+1) vlra) vdefs) && (List.for_all (check_rec_call alreadygrd (n+1) vlra) l) else error "Recursive call in the type of a declaration" else error "Unguarded recursive call" | (DOPN(MutCase _,_) as mc,l) -> let (_,p,c,vrest) = destCase mc in if (noccur_with_meta n nbfix p) then if (noccur_with_meta n nbfix c) then if (List.for_all (noccur_with_meta n nbfix) l) then (array_for_all (check_rec_call alreadygrd n vlra) vrest) else error "Recursive call in the argument of a function defined by cases" else error "Recursive call in the argument of a case expression" else error "Recursive call in the type of a Case expression" | _ -> error "Definition not in guarded form" in check_rec_call false 1 vlra def (* The function which checks that the whole block of definitions satisfies the guarded condition *) let check_cofix env sigma f = match f with | DOPN(CoFix(j),vargs) -> let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let la = Array.length varit in let (lna,vdefs) = decomp_DLAMV_name la ldef in let vlna = Array.of_list lna in let check_type i = try let _ = check_guard_rec_meta env sigma nbfix vdefs.(i) varit.(i) in () with UserError (s,str) -> error_ill_formed_rec_body CCI env str lna i vdefs in for i = 0 to nbfix-1 do check_type i done | _ -> assert false (* Checks the type of a (co)fixpoint. Fix and CoFix are typed the same way; only the guard condition differs. *) exception IllBranch of int let type_fixpoint env sigma lna lar vdefj = let lt = Array.length vdefj in assert (Array.length lar = lt); try conv_forall2_i (fun i env sigma def ar -> try conv_leq env sigma def (lift lt ar) with NotConvertible -> raise (IllBranch i)) env sigma (Array.map (fun j -> j.uj_type) vdefj) (Array.map body_of_type lar) with IllBranch i -> error_ill_typed_rec_body CCI env i lna vdefj lar (* A function which checks that a term well typed verifies both syntaxic conditions *) let control_only_guard env sigma = let rec control_rec = function | Rel(p) -> () | VAR _ -> () | DOP0(_) -> () | DOPN(CoFix(_),cl) as cofix -> check_cofix env sigma cofix; Array.iter control_rec cl | DOPN(Fix(_),cl) as fix -> check_fix env sigma fix; Array.iter control_rec cl | DOPN(_,cl) -> Array.iter control_rec cl | DOPL(_,cl) -> List.iter control_rec cl | DOP1(_,c) -> control_rec c | DOP2(_,c1,c2) -> control_rec c1; control_rec c2 | DLAM(_,c) -> control_rec c | DLAMV(_,v) -> Array.iter control_rec v in control_rec (* [keep_hyps sign ids] keeps the part of the signature [sign] which contains the variables of the set [ids], and recursively the variables contained in the types of the needed variables. *) let keep_hyps sign needed = rev_sign (fst (it_sign (fun ((hyps,globs) as sofar) id a -> if Idset.mem id globs then (add_sign (id,a) hyps, Idset.union (global_vars_set a.body) globs) else sofar) (nil_sign,needed) sign))