(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* relevance_of_rel env n | r :: _ when Int.equal n 1 -> r | _ :: extra -> relevance_of_rel_extra env extra (n-1) let relevance_of_flex env extra lft = function | ConstKey (c,_) -> relevance_of_constant env c | VarKey x -> relevance_of_var env x | RelKey p -> relevance_of_rel_extra env extra (Esubst.reloc_rel p lft) let rec relevance_of_fterm env extra lft f = let open CClosure in match CClosure.relevance_of f with | KnownR -> Sorts.Relevant | KnownI -> Sorts.Irrelevant | Unknown -> let r = match fterm_of f with | FRel n -> relevance_of_rel_extra env extra (Esubst.reloc_rel n lft) | FAtom c -> relevance_of_term_extra env extra lft (Esubst.subs_id 0) c | FFlex key -> relevance_of_flex env extra lft key | FInt _ -> Sorts.Relevant | FInd _ | FProd _ -> Sorts.Relevant (* types are always relevant *) | FConstruct (c,_) -> relevance_of_constructor env c | FApp (f, _) -> relevance_of_fterm env extra lft f | FProj (p, _) -> relevance_of_projection env p | FFix (((_,i),(lna,_,_)), _) -> (lna.(i)).binder_relevance | FCoFix ((i,(lna,_,_)), _) -> (lna.(i)).binder_relevance | FCaseT (ci, _, _, _, _) -> ci.ci_relevance | FLambda (len, tys, bdy, e) -> let extra = List.rev_append (List.map (fun (x,_) -> binder_relevance x) tys) extra in let lft = Esubst.el_liftn len lft in relevance_of_term_extra env extra lft e bdy | FLetIn (x, _, _, bdy, e) -> relevance_of_term_extra env (x.binder_relevance :: extra) (Esubst.el_lift lft) (Esubst.subs_lift e) bdy | FLIFT (k, f) -> relevance_of_fterm env extra (Esubst.el_shft k lft) f | FCLOS (c, e) -> relevance_of_term_extra env extra lft e c | FEvar (_, _) -> Sorts.Relevant (* let's assume evars are relevant for now *) | FLOCKED -> assert false in CClosure.set_relevance r f; r and relevance_of_term_extra env extra lft subs c = match kind c with | Rel n -> (match Esubst.expand_rel n subs with | Inl (k, f) -> relevance_of_fterm env extra (Esubst.el_liftn k lft) f | Inr (n, _) -> relevance_of_rel_extra env extra (Esubst.reloc_rel n lft)) | Var x -> relevance_of_var env x | Sort _ | Ind _ | Prod _ -> Sorts.Relevant (* types are always relevant *) | Cast (c, _, _) -> relevance_of_term_extra env extra lft subs c | Lambda ({binder_relevance=r;_}, _, bdy) -> relevance_of_term_extra env (r::extra) (Esubst.el_lift lft) (Esubst.subs_lift subs) bdy | LetIn ({binder_relevance=r;_}, _, _, bdy) -> relevance_of_term_extra env (r::extra) (Esubst.el_lift lft) (Esubst.subs_lift subs) bdy | App (c, _) -> relevance_of_term_extra env extra lft subs c | Const (c,_) -> relevance_of_constant env c | Construct (c,_) -> relevance_of_constructor env c | Case (ci, _, _, _) -> ci.ci_relevance | Fix ((_,i),(lna,_,_)) -> (lna.(i)).binder_relevance | CoFix (i,(lna,_,_)) -> (lna.(i)).binder_relevance | Proj (p, _) -> relevance_of_projection env p | Int _ -> Sorts.Relevant | Meta _ | Evar _ -> Sorts.Relevant (* let's assume metas and evars are relevant for now *) let relevance_of_fterm env extra lft c = if Environ.sprop_allowed env then relevance_of_fterm env extra lft c else Sorts.Relevant let relevance_of_term env c = if Environ.sprop_allowed env then relevance_of_term_extra env [] Esubst.el_id (Esubst.subs_id 0) c else Sorts.Relevant