(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* idset | c::cl -> if Idset.mem c idset then raise (InductiveError (SameNamesConstructors (id,c))) else check (Idset.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Idset.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names id cstset cl in check (Idset.add id indset) cstset' inds in check Idset.empty Idset.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let mind_check_arities env mie = let check_arity id c = if not (is_arity env c) then raise (InductiveError (NotAnArity id)) in List.iter (fun {mind_entry_typename=id; mind_entry_arity=ar} -> check_arity id ar) mie.mind_entry_inds (***********************************************************************) (***********************************************************************) (* Typing the arities and constructor types *) let is_info_arity env c = match dest_arity env c with | (_,Prop Null) -> false | (_,Prop Pos) -> true | (_,Type _) -> true let is_info_type env t = let s = t.utj_type in if s = mk_Set then true else if s = mk_Prop then false else try is_info_arity env t.utj_val with UserError _ -> true (* [infos] is a sequence of pair [islogic,issmall] for each type in the product of a constructor or arity *) let is_small infos = List.for_all (fun (logic,small) -> small) infos let is_logic_constr infos = List.for_all (fun (logic,small) -> logic) infos let is_logic_arity infos = List.for_all (fun (logic,small) -> logic || small) infos (* An inductive definition is a "unit" if it has only one constructor and that all arguments expected by this constructor are logical, this is the case for equality, conjonction of logical properties *) let is_unit constrsinfos = match constrsinfos with (* One info = One constructor *) | [constrinfos] -> is_logic_constr constrinfos (* CP : relax this constraint which was related to extraction && is_logic_arity arinfos *) | [] -> (* type without constructors *) true | _ -> false let rec infos_and_sort env t = match kind_of_term t with | Prod (name,c1,c2) -> let (varj,_) = infer_type env c1 in let env1 = Environ.push_rel (name,None,varj.utj_val) env in let logic = not (is_info_type env varj) in let small = Term.is_small varj.utj_type in (logic,small) :: (infos_and_sort env1 c2) | Cast (c,_) -> infos_and_sort env c | _ -> [] let small_unit constrsinfos = let issmall = List.for_all is_small constrsinfos and isunit = is_unit constrsinfos in issmall, isunit (* This (re)computes informations relevant to extraction and the sort of an arity or type constructor; we do not to recompute universes constraints *) (* [smax] is the max of the sorts of the products of the constructor type *) let enforce_type_constructor arsort smax cst = match smax, arsort with | Type uc, Type ua -> enforce_geq ua uc cst | _,_ -> cst let type_one_constructor env_ar_par params arsort c = let infos = infos_and_sort env_ar_par c in (* Each constructor is typed-checked here *) let (j,cst) = infer_type env_ar_par c in let full_cstr_type = it_mkProd_or_LetIn j.utj_val params in (* If the arity is at some level Type arsort, then the sort of the constructor must be below arsort; here we consider constructors with the global parameters (which add a priori more constraints on their sort) *) let cst2 = enforce_type_constructor arsort j.utj_type cst in (infos, full_cstr_type, cst2) let infer_constructor_packet env_ar params arsort vc = let env_ar_par = push_rel_context params env_ar in let (constrsinfos,jlc,cst) = List.fold_right (fun c (infosl,l,cst) -> let (infos,ct,cst') = type_one_constructor env_ar_par params arsort c in (infos::infosl,ct::l, Constraint.union cst cst')) vc ([],[],Constraint.empty) in let vc' = Array.of_list jlc in let issmall,isunit = small_unit constrsinfos in (issmall,isunit,vc', cst) (* Type-check an inductive definition. Does not check positivity conditions. *) let type_inductive env mie = if mie.mind_entry_inds = [] then anomaly "empty inductive types declaration"; (* Check unicity of names *) mind_check_names mie; mind_check_arities env mie; (* We first type params and arity of each inductive definition *) (* This allows to build the environment of arities and to share *) (* the set of constraints *) let cst, arities, rev_params_arity_list = List.fold_left (fun (cst,arities,l) ind -> (* Params are typed-checked here *) let params = ind.mind_entry_params in let env_params, params, cst1 = infer_local_decls env params in (* Arities (without params) are typed-checked here *) let arity, cst2 = infer_type env_params ind.mind_entry_arity in (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let id = ind.mind_entry_typename in let full_arity = it_mkProd_or_LetIn arity.utj_val params in Constraint.union cst (Constraint.union cst1 cst2), Sign.add_rel_decl (Name id, None, full_arity) arities, (params, id, full_arity, arity.utj_val)::l) (Constraint.empty,empty_rel_context,[]) mie.mind_entry_inds in let env_arities = push_rel_context arities env in let params_arity_list = List.rev rev_params_arity_list in (* Now, we type the constructors (without params) *) let inds,cst = List.fold_right2 (fun ind (params,id,full_arity,short_arity) (inds,cst) -> let (_,arsort) = dest_arity env full_arity in let lc = ind.mind_entry_lc in let (issmall,isunit,lc',cst') = infer_constructor_packet env_arities params arsort lc in let nparams = ind.mind_entry_nparams in let consnames = ind.mind_entry_consnames in let ind' = (params,nparams,id,full_arity,consnames,issmall,isunit,lc') in (ind'::inds, Constraint.union cst cst')) mie.mind_entry_inds params_arity_list ([],cst) in (env_arities, inds, cst) (***********************************************************************) (***********************************************************************) let all_sorts = [InProp;InSet;InType] let impredicative_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts issmall isunit = function | Type _ -> all_sorts | Prop Pos -> if issmall then all_sorts else impredicative_sorts | Prop Null -> (* Added InType which is derivable :when the type is unit and small *) if isunit then if issmall then all_sorts else impredicative_sorts else logical_sorts type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor | LocalNonPar of int * int exception IllFormedInd of ill_formed_ind let explain_ind_err ntyp env0 nbpar c err = let (lpar,c') = mind_extract_params nbpar c in let env = push_rel_context lpar env0 in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',mkRel (kt+nbpar)))) | LocalNotConstructor -> raise (InductiveError (NotConstructor (env,c',mkRel (ntyp+nbpar)))) | LocalNonPar (n,l) -> raise (InductiveError (NonPar (env,c',n,mkRel (nbpar-n+1), mkRel (l+nbpar)))) let failwith_non_pos_vect n ntypes v = for i = 0 to Array.length v - 1 do for k = n to n + ntypes - 1 do if not (noccurn k v.(i)) then raise (IllFormedInd (LocalNonPos (k-n+1))) done done; anomaly "failwith_non_pos_vect: some k in [n;n+ntypes-1] should occur in v" (* Check the inductive type is called with the expected parameters *) let check_correct_par env hyps nparams ntypes n l largs = let largs = Array.of_list largs in if Array.length largs < nparams then raise (IllFormedInd (LocalNotEnoughArgs l)); let (lpar,largs') = array_chop nparams largs in let nhyps = List.length hyps in let rec check k index = function | [] -> () | (_,Some _,_)::hyps -> check k (index+1) hyps | _::hyps -> match kind_of_term (whd_betadeltaiota env lpar.(k)) with | Rel w when w = index -> check (k-1) (index+1) hyps | _ -> raise (IllFormedInd (LocalNonPar (k+1,l))) in check (nparams-1) (n-nhyps) hyps; if not (array_for_all (noccur_between n ntypes) largs') then failwith_non_pos_vect n ntypes largs' (* This removes global parameters of the inductive types in lc *) let abstract_mind_lc env ntyps npars lc = if npars = 0 then lc else let make_abs = list_tabulate (function i -> lambda_implicit_lift npars (mkRel (i+1))) ntyps in Array.map (substl make_abs) lc (* The recursive function that checks positivity and builds the list of recursive arguments *) let check_positivity env ntypes hyps nparams i indlc = let nhyps = List.length hyps in (* check the inductive types occur positively in [c] *) let rec check_pos env n c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> assert (largs = []); if not (noccur_between n ntypes b) then raise (IllFormedInd (LocalNonPos n)); check_pos (push_rel (na, None, b) env) (n+1) d | Rel k -> if k >= n && k (* If the inductive type being defined or a parameter appears as parameter, then we have an imbricated type *) if List.for_all (noccur_between n ntypes) largs then (* If parameters are passed but occur negatively, then the argument is considered non recursive *) if List.for_all (noccur_between (n-nhyps) nhyps) largs then Norec else try check_positive_imbr env n ind_sp largs with IllFormedInd _ -> Norec else check_positive_imbr env n ind_sp largs | err -> if noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs then Norec else raise (IllFormedInd (LocalNonPos n)) (* accesses to the environment are not factorised, but does it worth it? *) and check_positive_imbr env n mi largs = let (mib,mip) = lookup_mind_specif env mi in let auxnpar = mip.mind_nparams in let (lpar,auxlargs) = try list_chop auxnpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (* If the inductive appears in the args (non params) then the definition is not positive. *) if not (List.for_all (noccur_between n ntypes) auxlargs) then raise (IllFormedInd (LocalNonPos n)); (* If the inductive type appears non positively in the parameters then the def is not positive *) let lrecargs = List.map (check_weak_pos env n) lpar in let auxlc = mip.mind_nf_lc in let auxntyp = mib.mind_ntypes in (* We do not deal with imbricated mutual inductive types *) if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n)); (* The abstract imbricated inductive type with parameters substituted *) let auxlcvect = abstract_mind_lc env auxntyp auxnpar auxlc in (* Extends the environment with a variable corresponding to the inductive def *) let env' = push_rel (Anonymous,None,type_of_inductive env mi) env in let newidx = n + auxntyp in let _ = (* fails if the inductive type occurs non positively *) (* when substituted *) Array.map (function c -> let c' = hnf_prod_applist env c (List.map (lift auxntyp) lpar) in check_construct env' false newidx c') auxlcvect in Imbr(mi,lrecargs) (* The function check_weak_pos is exactly the same as check_pos, but with an extra case for traversing abstractions, like in Marseille's contribution about bisimulations: CoInductive strong_eq:process->process->Prop:= str_eq:(p,q:process)((a:action)(p':process)(transition p a p')-> (Ex [q':process] (transition q a q')/\(strong_eq p' q')))-> ((a:action)(q':process)(transition q a q')-> (Ex [p':process] (transition p a p')/\(strong_eq p' q')))-> (strong_eq p q). Abstractions may occur in imbricated recursive ocurrences, but I am not sure if they make sense in a form of constructor. This is why I chose to duplicated the code. Eduardo 13/7/99. *) (* Since Lambda can no longer occur after a product or a Ind, I have branched the remaining cases on check_pos. HH 28/1/00 *) and check_weak_pos env n c = let x = whd_betadeltaiota env c in match kind_of_term x with (* The extra case *) | Lambda (na,b,d) -> if noccur_between n ntypes b then check_weak_pos (push_rel (na,None,b) env) (n+1) d else raise (IllFormedInd (LocalNonPos n)) (******************) | _ -> check_pos env n x (* check the inductive types occur positively in the products of C, if check_head=true, also check the head corresponds to a constructor of the ith type *) and check_construct env check_head n c = let rec check_constr_rec env lrec n c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> assert (largs = []); let recarg = check_pos env n b in check_constr_rec (push_rel (na, None, b) env) (recarg::lrec) (n+1) d | hd -> if check_head then if hd = Rel (n+ntypes-i) then check_correct_par env hyps nparams ntypes n (ntypes-i+1) largs else raise (IllFormedInd LocalNotConstructor) else if not (List.for_all (noccur_between n ntypes) largs) then raise (IllFormedInd (LocalNonPos n)); List.rev lrec in check_constr_rec env [] n c in Array.map (fun c -> let c = body_of_type c in let sign, rawc = mind_extract_params nhyps c in let env' = push_rel_context sign env in try check_construct env' true (1+nhyps) rawc with IllFormedInd err -> explain_ind_err (ntypes-i+1) env nhyps c err) indlc let is_recursive listind = let rec one_is_rec rvec = List.exists (function Mrec(i) -> List.mem i listind | Imbr(_,lvec) -> one_is_rec lvec | Norec -> false | Param _ -> false) rvec in array_exists one_is_rec (* Check positivity of an inductive definition *) let cci_inductive env env_ar finite inds cst = let ntypes = List.length inds in (* Compute the set of used section variables *) let ids = List.fold_left (fun acc (_,_,_,ar,_,_,_,lc) -> Idset.union (Environ.global_vars_set env (body_of_type ar)) (Array.fold_left (fun acc c -> Idset.union (global_vars_set env (body_of_type c)) acc) acc lc)) Idset.empty inds in let hyps = keep_hyps env ids in (* Check one inductive *) let one_packet i (params,nparams,id,ar,cnames,issmall,isunit,lc) = (* Check positivity *) let recargs = check_positivity env_ar ntypes params nparams i lc in (* Arity in normal form *) let (ar_sign,ar_sort) = dest_arity env ar in let nf_ar = if isArity (body_of_type ar) then ar else it_mkProd_or_LetIn (mkSort ar_sort) ar_sign in (* Elimination sorts *) let isunit = isunit && ntypes = 1 && (not (is_recursive [0] recargs)) in let kelim = allowed_sorts issmall isunit ar_sort in (* Type of constructors in normal form *) let splayed_lc = Array.map (dest_prod_assum env_ar) lc in let nf_lc = array_map2 (fun (d,b) c -> it_mkProd_or_LetIn b d) splayed_lc lc in let nf_lc = if nf_lc = lc then lc else nf_lc in (* Build the inductive *) { mind_consnames = Array.of_list cnames; mind_typename = id; mind_user_lc = lc; mind_nf_lc = nf_lc; mind_user_arity = ar; mind_nf_arity = nf_ar; mind_nrealargs = rel_context_length ar_sign - nparams; mind_sort = ar_sort; mind_kelim = kelim; mind_listrec = recargs; mind_nparams = nparams; mind_params_ctxt = params } in let packets = Array.of_list (list_map_i one_packet 1 inds) in { mind_ntypes = ntypes; mind_finite = finite; mind_hyps = hyps; mind_packets = packets; mind_constraints = cst; mind_singl = None } (***********************************************************************) (***********************************************************************) let check_inductive env mie = (* First type the inductive definition *) let (env_arities, inds, cst) = type_inductive env mie in (* Then check positivity *) cci_inductive env env_arities mie.mind_entry_finite inds cst