(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* f as comparison on floats rather than the polymorphic OCaml comparison which is much slower. *) let is_nan (f : float) = f <> f let is_infinity f = f = infinity let is_neg_infinity f = f = neg_infinity (* OCaml gives a sign to nan values which should not be displayed as all NaNs are considered equal here. OCaml prints infinities as "inf" (resp. "-inf") but we want "infinity" (resp. "neg_infinity"). *) let to_string_raw fmt f = if is_nan f then "nan" else if is_infinity f then "infinity" else if is_neg_infinity f then "neg_infinity" else Printf.sprintf fmt f let to_hex_string = to_string_raw "%h" (* Printing a binary64 float in 17 decimal places and parsing it again will yield the same float. *) let to_string = to_string_raw "%.17g" let of_string = float_of_string (* Compiles a float to OCaml code *) let compile f = Printf.sprintf "Float64.of_float (%s)" (to_hex_string f) let of_float f = f let sign f = copysign 1. f < 0. let opp = ( ~-. ) let abs = abs_float type float_comparison = FEq | FLt | FGt | FNotComparable (* See above comment on [is_nan] for the [float] type annotations. *) let eq (x : float) (y : float) = x = y [@@ocaml.inline always] let lt (x : float) (y : float) = x < y [@@ocaml.inline always] let le (x : float) (y : float) = x <= y [@@ocaml.inline always] (* inspired by lib/util.ml; see also #10471 *) let pervasives_compare (x : float) (y : float) = compare x y let compare (x : float) (y : float) = if x < y then FLt else ( if x > y then FGt else ( if x = y then FEq else FNotComparable (* NaN case *) ) ) [@@ocaml.inline always] type float_class = | PNormal | NNormal | PSubn | NSubn | PZero | NZero | PInf | NInf | NaN let classify x = match classify_float x with | FP_normal -> if 0. < x then PNormal else NNormal | FP_subnormal -> if 0. < x then PSubn else NSubn | FP_zero -> if 0. < 1. /. x then PZero else NZero | FP_infinite -> if 0. < x then PInf else NInf | FP_nan -> NaN [@@ocaml.inline always] let of_int63 x = Uint63.to_float x [@@ocaml.inline always] let prec = 53 let normfr_mantissa f = let f = abs f in if f >= 0.5 && f < 1. then Uint63.of_float (ldexp f prec) else Uint63.zero [@@ocaml.inline always] let eshift = 2101 (* 2*emax + prec *) (* When calling frexp on a nan or an infinity, the returned value inside the exponent is undefined. Therefore we must always set it to a fixed value (here 0). *) let frshiftexp f = match classify_float f with | FP_zero | FP_infinite | FP_nan -> (f, Uint63.zero) | FP_normal | FP_subnormal -> let (m, e) = frexp f in m, Uint63.of_int (e + eshift) [@@ocaml.inline always] let ldshiftexp f e = ldexp f (Uint63.to_int_min e (2 * eshift) - eshift) [@@ocaml.inline always] external next_up : float -> float = "coq_next_up_byte" "coq_next_up" [@@unboxed] [@@noalloc] external next_down : float -> float = "coq_next_down_byte" "coq_next_down" [@@unboxed] [@@noalloc] let equal f1 f2 = match classify_float f1 with | FP_normal | FP_subnormal | FP_infinite -> (f1 = f2) | FP_nan -> is_nan f2 | FP_zero -> f1 = f2 && 1. /. f1 = 1. /. f2 (* OCaml consider 0. = -0. *) [@@ocaml.inline always] let hash = (* Hashtbl.hash already considers all NaNs as equal, cf. https://github.com/ocaml/ocaml/commit/aea227fdebe0b5361fd3e1d0aaa42cf929052269 and http://caml.inria.fr/pub/docs/manual-ocaml/libref/Hashtbl.html *) Hashtbl.hash let total_compare f1 f2 = (* pervasives_compare considers all NaNs as equal, which is fine here, but also considers -0. and +0. as equal *) if f1 = 0. && f2 = 0. then pervasives_compare (1. /. f1) (1. /. f2) else pervasives_compare f1 f2 let is_float64 t = Obj.tag t = Obj.double_tag [@@ocaml.inline always]