(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* f (* OCaml give a sign to nan values which should not be displayed as all nan are * considered equal *) let to_string f = if is_nan f then "nan" else string_of_float f let of_string = float_of_string let of_float f = f let opp = ( ~-. ) let abs = abs_float type float_comparison = FEq | FLt | FGt | FNotComparable let compare x y = if x < y then FLt else ( if x > y then FGt else ( if x = y then FEq else FNotComparable (* NaN case *) ) ) type float_class = | PNormal | NNormal | PSubn | NSubn | PZero | NZero | PInf | NInf | NaN let classify x = match classify_float x with | FP_normal -> if 0. < x then PNormal else NNormal | FP_subnormal -> if 0. < x then PSubn else NSubn | FP_zero -> if 0. < 1. /. x then PZero else NZero | FP_infinite -> if 0. < x then PInf else NInf | FP_nan -> NaN let mul = ( *. ) let add = ( +. ) let sub = ( -. ) let div = ( /. ) let sqrt = sqrt let of_int63 = Uint63.to_float let prec = 53 let normfr_mantissa f = let f = abs f in if f >= 0.5 && f < 1. then Uint63.of_float (ldexp f prec) else Uint63.zero let eshift = 2101 (* 2*emax + prec *) (* When calling frexp on a nan or an infinity, the returned value inside the exponent is undefined. Therefore we must always set it to a fixed value (here 0). *) let frshiftexp f = match classify_float f with | FP_zero | FP_infinite | FP_nan -> (f, Uint63.zero) | FP_normal | FP_subnormal -> let (m, e) = frexp f in m, Uint63.of_int (e + eshift) let ldshiftexp f e = ldexp f (snd (Uint63.to_int2 e) - eshift) let equal f1 f2 = match classify_float f1 with | FP_normal | FP_subnormal | FP_infinite -> (f1 = f2) | FP_nan -> is_nan f2 | FP_zero -> f1 = f2 && 1. /. f1 = 1. /. f2 (* OCaml consider 0. = -0. *) let hash = (* Hashtbl.hash already considers all NaNs as equal, cf. https://github.com/ocaml/ocaml/commit/aea227fdebe0b5361fd3e1d0aaa42cf929052269 and http://caml.inria.fr/pub/docs/manual-ocaml/libref/Hashtbl.html *) Hashtbl.hash let total_compare f1 f2 = (* pervasives_compare considers all NaNs as equal, which is fine here, but also considers -0. and +0. as equal *) if f1 = 0. && f2 = 0. then Util.pervasives_compare (1. /. f1) (1. /. f2) else Util.pervasives_compare f1 f2