From fc0c2e19e763a4d3b4cbdb490950e0f85558e5c9 Mon Sep 17 00:00:00 2001 From: Arthur Azevedo de Amorim Date: Tue, 22 Oct 2019 09:47:01 -0400 Subject: Add a notation for the empty type. --- plugins/ssr/ssrfun.v | 13 +++++++++++++ 1 file changed, 13 insertions(+) (limited to 'plugins') diff --git a/plugins/ssr/ssrfun.v b/plugins/ssr/ssrfun.v index dc774e811e..b8affba541 100644 --- a/plugins/ssr/ssrfun.v +++ b/plugins/ssr/ssrfun.v @@ -56,6 +56,10 @@ Require Import ssreflect. Structure inference, as in the implementation of the mxdirect predicate in matrix.v. + - The empty type: + void == a notation for the Empty_set type of the standard library. + of_void T == the canonical injection void -> T. + - Sigma types: tag w == the i of w : {i : I & T i}. tagged w == the T i component of w : {i : I & T i}. @@ -483,6 +487,12 @@ Arguments idfun {T} x /. Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2. +(** The empty type. **) + +Notation void := Empty_set. + +Definition of_void T (x : void) : T := match x with end. + (** Strong sigma types. **) Section Tag. @@ -642,6 +652,9 @@ End Injections. Lemma Some_inj {T : nonPropType} : injective (@Some T). Proof. by move=> x y []. Qed. +Lemma of_voidK T : pcancel (of_void T) [fun _ => None]. +Proof. by case. Qed. + (** cancellation lemmas for dependent type casts. **) Lemma esymK T x y : cancel (@esym T x y) (@esym T y x). Proof. by case: y /. Qed. -- cgit v1.2.3