From df3a49a18c5b01984000df9244ecea9c275b30cd Mon Sep 17 00:00:00 2001 From: Guillaume Melquiond Date: Mon, 7 Dec 2015 10:52:14 +0100 Subject: Fix some typos. --- plugins/setoid_ring/InitialRing.v | 6 +++--- plugins/setoid_ring/Ncring_initial.v | 4 ++-- 2 files changed, 5 insertions(+), 5 deletions(-) (limited to 'plugins/setoid_ring') diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v index b92b847be5..56023bfb5c 100644 --- a/plugins/setoid_ring/InitialRing.v +++ b/plugins/setoid_ring/InitialRing.v @@ -155,7 +155,7 @@ Section ZMORPHISM. Ltac norm := gen_srewrite Rsth Reqe ARth. Ltac add_push := gen_add_push radd Rsth Reqe ARth. -(*morphisms are extensionaly equal*) +(*morphisms are extensionally equal*) Lemma same_genZ : forall x, [x] == gen_phiZ1 x. Proof. destruct x;simpl; try rewrite (same_gen ARth);rrefl. @@ -246,7 +246,7 @@ Proof (SRth_ARth Nsth Nth). Lemma Neqb_ok : forall x y, N.eqb x y = true -> x = y. Proof. exact (fun x y => proj1 (N.eqb_eq x y)). Qed. -(**Same as above : definition of two,extensionaly equal, generic morphisms *) +(**Same as above : definition of two, extensionally equal, generic morphisms *) (**from N to any semi-ring*) Section NMORPHISM. Variable R : Type. @@ -671,7 +671,7 @@ End GEN_DIV. end. (* A simple tactic recognizing only 0 and 1. The inv_gen_phiX above - are only optimisations that directly returns the reifid constant + are only optimisations that directly returns the reified constant instead of resorting to the constant propagation of the simplification algorithm. *) Ltac inv_gen_phi rO rI cO cI t := diff --git a/plugins/setoid_ring/Ncring_initial.v b/plugins/setoid_ring/Ncring_initial.v index c40e0ffbaa..c2eafcdad8 100644 --- a/plugins/setoid_ring/Ncring_initial.v +++ b/plugins/setoid_ring/Ncring_initial.v @@ -42,7 +42,7 @@ Defined. (*Instance ZEquality: @Equality Z:= (@eq Z).*) -(** Two generic morphisms from Z to (abrbitrary) rings, *) +(** Two generic morphisms from Z to (arbitrary) rings, *) (**second one is more convenient for proofs but they are ext. equal*) Section ZMORPHISM. Context {R:Type}`{Ring R}. @@ -130,7 +130,7 @@ Ltac rsimpl := simpl. Qed. -(*morphisms are extensionaly equal*) +(*morphisms are extensionally equal*) Lemma same_genZ : forall x, [x] == gen_phiZ1 x. Proof. destruct x;rsimpl; try rewrite same_gen; reflexivity. -- cgit v1.2.3