From aab16ea645fefd71b6bd0fdb155a076640ab0d4e Mon Sep 17 00:00:00 2001 From: msozeau Date: Mon, 2 Aug 2010 21:14:19 +0000 Subject: Fix [clenv_missing] to compute a better approximation of missing dependent arguments. It breaks compatibility as some [apply with] clauses are not necessary anymore. Typically when applying [f_equal], the domain type of the function can be infered even if it does not appear directly in the conclusion of the goal. Fixes bug #2154. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13367 85f007b7-540e-0410-9357-904b9bb8a0f7 --- plugins/rtauto/Bintree.v | 8 ++++---- plugins/rtauto/Rtauto.v | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) (limited to 'plugins/rtauto') diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v index d68fb16567..769869584d 100644 --- a/plugins/rtauto/Bintree.v +++ b/plugins/rtauto/Bintree.v @@ -87,7 +87,7 @@ end. Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n. induction m;simpl;intro n;destruct n;congruence || -(intro e;apply f_equal with positive;auto). +(intro e;apply f_equal;auto). Defined. Theorem refl_pos_eq : forall m, pos_eq m m = true. @@ -140,7 +140,7 @@ end. Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n. induction m;simpl;intro n;destruct n;congruence || -(intro e;apply f_equal with nat;auto). +(intro e;apply f_equal;auto). Defined. Theorem refl_nat_eq : forall n, nat_eq n n = true. @@ -161,14 +161,14 @@ List.map f (l ++ m) = List.map f l ++ List.map f m. induction l. reflexivity. simpl. -intro m ; apply f_equal with (list B);apply IHl. +intro m ; apply f_equal;apply IHl. Qed. Lemma length_map : forall (A B:Set) (f:A -> B) l, length (List.map f l) = length l. induction l. reflexivity. -simpl; apply f_equal with nat;apply IHl. +simpl; apply f_equal;apply IHl. Qed. Lemma Lget_map : forall (A B:Set) (f:A -> B) i l, diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v index 63e6717a09..e805428313 100644 --- a/plugins/rtauto/Rtauto.v +++ b/plugins/rtauto/Rtauto.v @@ -41,7 +41,7 @@ end. Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n. induction m;simpl;destruct n;congruence || -(intro e;apply f_equal with positive;auto). +(intro e;apply f_equal;auto). Qed. Fixpoint form_eq (p q:form) {struct p} :bool := -- cgit v1.2.3