From 4e176a7ee4660d505321ca55c5ce70a6c3d50d3b Mon Sep 17 00:00:00 2001 From: Guillaume Melquiond Date: Sun, 22 Dec 2019 11:17:22 +0400 Subject: Use a more straightforward algorithm for mulc on 32-bit architectures. (Fixes #11321) It has the added advantage of performing 6 less 64-bit operations per long multiplication. --- kernel/uint63_31.ml | 34 ++++++++++++++++++---------------- 1 file changed, 18 insertions(+), 16 deletions(-) (limited to 'kernel') diff --git a/kernel/uint63_31.ml b/kernel/uint63_31.ml index 3d7dd1792a..ddb6ba656e 100644 --- a/kernel/uint63_31.ml +++ b/kernel/uint63_31.ml @@ -118,25 +118,27 @@ let div21 xh xl y = let div21 xh xl y = if Int64.compare y xh <= 0 then zero, zero else div21 xh xl y - (* exact multiplication *) +(* exact multiplication *) let mulc x y = - let lx = ref (Int64.logand x maxuint31) in - let ly = ref (Int64.logand y maxuint31) in + let lx = Int64.logand x maxuint31 in + let ly = Int64.logand y maxuint31 in let hx = Int64.shift_right x 31 in let hy = Int64.shift_right y 31 in - let hr = ref (Int64.mul hx hy) in - let lr = ref (Int64.logor (Int64.mul !lx !ly) (Int64.shift_left !hr 62)) in - hr := (Int64.shift_right_logical !hr 1); - lx := Int64.mul !lx hy; - ly := Int64.mul hx !ly; - hr := Int64.logor !hr (Int64.add (Int64.shift_right !lx 32) (Int64.shift_right !ly 32)); - lr := Int64.add !lr (Int64.shift_left !lx 31); - hr := Int64.add !hr (Int64.shift_right_logical !lr 63); - lr := Int64.add (Int64.shift_left !ly 31) (mask63 !lr); - hr := Int64.add !hr (Int64.shift_right_logical !lr 63); - if Int64.logand !lr Int64.min_int <> 0L - then Int64.(sub !hr one, mask63 !lr) - else (!hr, !lr) + (* compute the median products *) + let s = Int64.add (Int64.mul lx hy) (Int64.mul hx ly) in + (* s fits on 64 bits, split it into a 33-bit high part and a 31-bit low part *) + let lr = Int64.shift_left (Int64.logand s maxuint31) 31 in + let hr = Int64.shift_right_logical s 31 in + (* add the outer products *) + let lr = Int64.add (Int64.mul lx ly) lr in + let hr = Int64.add (Int64.mul hx hy) hr in + (* now x * y = hr * 2^62 + lr and lr < 2^63 *) + let lr = Int64.add lr (Int64.shift_left (Int64.logand hr 1L) 62) in + let hr = Int64.shift_right_logical hr 1 in + (* now x * y = hr * 2^63 + lr, but lr might be too large *) + if Int64.logand lr Int64.min_int <> 0L + then Int64.add hr 1L, mask63 lr + else hr, lr let equal (x : t) y = x = y -- cgit v1.2.3