From f7051cd4eb4cefc4b2ec04c8c29369dcaf0062f2 Mon Sep 17 00:00:00 2001 From: Matej Kosik Date: Fri, 6 Nov 2015 15:18:35 +0100 Subject: ENH: define the meaning of 'p' --- doc/refman/RefMan-cic.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex index 87ef046fa4..91c1418546 100644 --- a/doc/refman/RefMan-cic.tex +++ b/doc/refman/RefMan-cic.tex @@ -1571,7 +1571,7 @@ elimination on any sort is allowed. Let $c$ be a term of type $C$, we assume $C$ is a type of constructor for an inductive type $I$. Let $P$ be a term that represents the property to be proved. -We assume $r$ is the number of parameters. +We assume $r$ is the number of parameters and $p$ is the number of arguments. We define a new type \CI{c:C}{P} which represents the type of the branch corresponding to the $c:C$ constructor. @@ -1584,7 +1584,7 @@ branch corresponding to the $c:C$ constructor. We write \CI{c}{P} for \CI{c:C}{P} with $C$ the type of $c$. \paragraph{Examples.} -For $\ListA$ the type of $P$ will be $\ListA\ra s$ for $s \in \Sort$. \\ +For $\List \nat$ the type of $P$ will be $\ListA\ra s$ for $s \in \Sort$. \\ $ \CI{(\cons~A)}{P} \equiv \forall a:A, \forall l:\ListA,(P~(\cons~A~a~l))$. -- cgit v1.2.3