From eac8f77541e48e2011a2f89f8699059b6a524aaa Mon Sep 17 00:00:00 2001 From: Jason Gross Date: Sun, 31 Mar 2019 14:58:03 -0400 Subject: Add test-case for #9840 --- test-suite/output/NumeralNotations.out | 186 +++++++++++++++ test-suite/output/NumeralNotations.v | 408 +++++++++++++++++++++++++++++++++ test-suite/success/NumeralNotations.v | 313 ------------------------- 3 files changed, 594 insertions(+), 313 deletions(-) create mode 100644 test-suite/output/NumeralNotations.out create mode 100644 test-suite/output/NumeralNotations.v delete mode 100644 test-suite/success/NumeralNotations.v diff --git a/test-suite/output/NumeralNotations.out b/test-suite/output/NumeralNotations.out new file mode 100644 index 0000000000..cb49e66ed7 --- /dev/null +++ b/test-suite/output/NumeralNotations.out @@ -0,0 +1,186 @@ +The command has indeed failed with message: +Unexpected term (nat -> nat) while parsing a numeral notation. +The command has indeed failed with message: +Unexpected non-option term opaque4 while parsing a numeral notation. +The command has indeed failed with message: +Unexpected term (fun (A : Type) (x : A) => x) while parsing a numeral +notation. +let v := 0%ppp in v : punit + : punit +let v := 0%ppp in v : punit + : punit +let v := 0%ppp in v : punit + : punit +let v := 0%ppp in v : punit + : punit +let v := 0%uto in v : unit + : unit +The command has indeed failed with message: +Cannot interpret this number as a value of type unit +The command has indeed failed with message: +Cannot interpret this number as a value of type unit +let v := 0%upp in v : unit + : unit +let v := 0%upp in v : unit + : unit +let v := 0%upp in v : unit + : unit +let v := 0%ppps in v : punit + : punit +File "stdin", line 91, characters 2-46: +Warning: To avoid stack overflow, large numbers in punit are interpreted as +applications of pto_punits. [abstract-large-number,numbers] +The command has indeed failed with message: +In environment +v := pto_punits (Decimal.D1 Decimal.Nil) : punit +The term "v" has type "punit@{Set}" while it is expected to have type + "punit@{u}". +S + : nat -> nat +S (ack 4 4) + : nat +let v := 0%wnat in v : wnat + : wnat +0%wnat + : wnat +{| unwrap := ack 4 4 |} + : wnat +{| Test6.unwrap := 0 |} + : Test6.wnat +let v := 0%wnat in v : Test6.wnat + : Test6.wnat +let v := 0%wuint in v : wuint + : wuint +let v := 1%wuint in v : wuint + : wuint +let v := 0%wuint8 in v : wuint + : wuint +let v := 0 in v : nat + : nat +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "wuint". + = {| unwrap := Decimal.D0 Decimal.Nil |} + : wuint +let v := 0%wuint8' in v : wuint + : wuint +let v := 0%wuint9 in v : wuint + : wuint +let v := 0%wuint9' in v : wuint + : wuint +let v := 0 in v : nat + : nat +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "wuint". +File "stdin", line 202, characters 2-72: +Warning: The 'abstract after' directive has no effect when the parsing +function (of_uint) targets an option type. +[abstract-large-number-no-op,numbers] +The command has indeed failed with message: +The 'abstract after' directive has no effect when the parsing function +(of_uint) targets an option type. [abstract-large-number-no-op,numbers] +The command has indeed failed with message: +The reference of_uint was not found in the current environment. +The command has indeed failed with message: +The reference of_uint was not found in the current environment. +let v := of_uint (Decimal.D1 Decimal.Nil) in v : unit + : unit +let v := 0%test13 in v : unit + : unit +The command has indeed failed with message: +to_uint' is bound to a notation that does not denote a reference. +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +The command has indeed failed with message: +to_uint'' is bound to a notation that does not denote a reference. +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +let v := 0%test14' in v : unit + : unit +let v := 0%test14' in v : unit + : unit +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +let v := 0%test14' in v : unit + : unit +The command has indeed failed with message: +This command does not support the Global option in sections. +let v := 0%test14'' in v : unit + : unit +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +The command has indeed failed with message: +In environment +v := 0 : nat +The term "v" has type "nat" while it is expected to have type "unit". +let v := 0%test15 in v : unit + : unit +let v := 0%test15 in v : unit + : unit +let v := 0%test15 in v : unit + : unit +let v := foo a.t in v : Foo + : Foo +The command has indeed failed with message: +Cannot interpret in test16_scope because NumeralNotations.Test16.F.Foo could not be found in the current environment. +let v := 0%test17 in v : myint63 + : myint63 +let v := 0%Q in v : Q + : Q +let v := 1%Q in v : Q + : Q +let v := 2%Q in v : Q + : Q +let v := 3%Q in v : Q + : Q +let v := 4%Q in v : Q + : Q + = (0, 1) + : nat * nat + = (1, 1) + : nat * nat + = (2, 1) + : nat * nat + = (3, 1) + : nat * nat + = (4, 1) + : nat * nat +let v := (-1)%Zlike in v : Zlike + : Zlike +let v := 0%Zlike in v : Zlike + : Zlike +let v := 1%Zlike in v : Zlike + : Zlike +let v := 2%Zlike in v : Zlike + : Zlike +let v := 3%Zlike in v : Zlike + : Zlike +let v := 4%Zlike in v : Zlike + : Zlike +2%Zlike + : Zlike +0%Zlike + : Zlike diff --git a/test-suite/output/NumeralNotations.v b/test-suite/output/NumeralNotations.v new file mode 100644 index 0000000000..fcfdd82dcc --- /dev/null +++ b/test-suite/output/NumeralNotations.v @@ -0,0 +1,408 @@ +(* Test that we fail, rather than raising anomalies, on opaque terms during interpretation *) + +Declare Scope opaque_scope. + +(* https://github.com/coq/coq/pull/8064#discussion_r202497516 *) +Module Test1. + Axiom hold : forall {A B C}, A -> B -> C. + Definition opaque3 (x : Decimal.int) : Decimal.int := hold x (fix f (x : nat) : nat := match x with O => O | S n => S (f n) end). + Numeral Notation Decimal.int opaque3 opaque3 : opaque_scope. + Delimit Scope opaque_scope with opaque. + Fail Check 1%opaque. +End Test1. + +(* https://github.com/coq/coq/pull/8064#discussion_r202497990 *) +Module Test2. + Axiom opaque4 : option Decimal.int. + Definition opaque6 (x : Decimal.int) : option Decimal.int := opaque4. + Numeral Notation Decimal.int opaque6 opaque6 : opaque_scope. + Delimit Scope opaque_scope with opaque. + Open Scope opaque_scope. + Fail Check 1%opaque. +End Test2. + +Declare Scope silly_scope. + +Module Test3. + Inductive silly := SILLY (v : Decimal.uint) (f : forall A, A -> A). + Definition to_silly (v : Decimal.uint) := SILLY v (fun _ x => x). + Definition of_silly (v : silly) := match v with SILLY v _ => v end. + Numeral Notation silly to_silly of_silly : silly_scope. + Delimit Scope silly_scope with silly. + Fail Check 1%silly. +End Test3. + +Module Test4. + Declare Scope opaque_scope. + Declare Scope silly_scope. + Declare Scope pto. + Declare Scope ppo. + Declare Scope ptp. + Declare Scope ppp. + Declare Scope uto. + Declare Scope upo. + Declare Scope utp. + Declare Scope upp. + Declare Scope ppps. + Polymorphic NonCumulative Inductive punit := ptt. + Polymorphic Definition pto_punit (v : Decimal.uint) : option punit := match Nat.of_uint v with O => Some ptt | _ => None end. + Polymorphic Definition pto_punit_all (v : Decimal.uint) : punit := ptt. + Polymorphic Definition pof_punit (v : punit) : Decimal.uint := Nat.to_uint 0. + Definition to_punit (v : Decimal.uint) : option punit := match Nat.of_uint v with O => Some ptt | _ => None end. + Definition of_punit (v : punit) : Decimal.uint := Nat.to_uint 0. + Polymorphic Definition pto_unit (v : Decimal.uint) : option unit := match Nat.of_uint v with O => Some tt | _ => None end. + Polymorphic Definition pof_unit (v : unit) : Decimal.uint := Nat.to_uint 0. + Definition to_unit (v : Decimal.uint) : option unit := match Nat.of_uint v with O => Some tt | _ => None end. + Definition of_unit (v : unit) : Decimal.uint := Nat.to_uint 0. + Numeral Notation punit to_punit of_punit : pto. + Numeral Notation punit pto_punit of_punit : ppo. + Numeral Notation punit to_punit pof_punit : ptp. + Numeral Notation punit pto_punit pof_punit : ppp. + Numeral Notation unit to_unit of_unit : uto. + Delimit Scope pto with pto. + Delimit Scope ppo with ppo. + Delimit Scope ptp with ptp. + Delimit Scope ppp with ppp. + Delimit Scope uto with uto. + Check let v := 0%pto in v : punit. + Check let v := 0%ppo in v : punit. + Check let v := 0%ptp in v : punit. + Check let v := 0%ppp in v : punit. + Check let v := 0%uto in v : unit. + Fail Check 1%uto. + Fail Check (-1)%uto. + Numeral Notation unit pto_unit of_unit : upo. + Numeral Notation unit to_unit pof_unit : utp. + Numeral Notation unit pto_unit pof_unit : upp. + Delimit Scope upo with upo. + Delimit Scope utp with utp. + Delimit Scope upp with upp. + Check let v := 0%upo in v : unit. + Check let v := 0%utp in v : unit. + Check let v := 0%upp in v : unit. + + Polymorphic Definition pto_punits := pto_punit_all@{Set}. + Polymorphic Definition pof_punits := pof_punit@{Set}. + Numeral Notation punit pto_punits pof_punits : ppps (abstract after 1). + Delimit Scope ppps with ppps. + Universe u. + Constraint Set < u. + Check let v := 0%ppps in v : punit@{u}. (* Check that universes are refreshed *) + Fail Check let v := 1%ppps in v : punit@{u}. (* Note that universes are not refreshed here *) +End Test4. + +Module Test5. + Check S. (* At one point gave Error: Anomaly "Uncaught exception Pretype_errors.PretypeError(_, _, _)." Please report at http://coq.inria.fr/bugs/. *) +End Test5. + +Module Test6. + (* Check that numeral notations on enormous terms don't take forever to print/parse *) + (* Ackerman definition from https://stackoverflow.com/a/10303475/377022 *) + Fixpoint ack (n m : nat) : nat := + match n with + | O => S m + | S p => let fix ackn (m : nat) := + match m with + | O => ack p 1 + | S q => ack p (ackn q) + end + in ackn m + end. + + Timeout 1 Check (S (ack 4 4)). (* should be instantaneous *) + + Local Set Primitive Projections. + Record > wnat := wrap { unwrap :> nat }. + Definition to_uint (x : wnat) : Decimal.uint := Nat.to_uint x. + Definition of_uint (x : Decimal.uint) : wnat := Nat.of_uint x. + Module Export Scopes. + Declare Scope wnat_scope. + Delimit Scope wnat_scope with wnat. + End Scopes. + Module Export Notations. + Export Scopes. + Numeral Notation wnat of_uint to_uint : wnat_scope (abstract after 5000). + End Notations. + Check let v := 0%wnat in v : wnat. + Check wrap O. + Timeout 1 Check wrap (ack 4 4). (* should be instantaneous *) +End Test6. + +Module Test6_2. + Import Test6.Scopes. + Check Test6.wrap 0. + Import Test6.Notations. + Check let v := 0%wnat in v : Test6.wnat. +End Test6_2. + +Module Test7. + Local Set Primitive Projections. + Record wuint := wrap { unwrap : Decimal.uint }. + Declare Scope wuint_scope. + Delimit Scope wuint_scope with wuint. + Numeral Notation wuint wrap unwrap : wuint_scope. + Check let v := 0%wuint in v : wuint. + Check let v := 1%wuint in v : wuint. +End Test7. + +Module Test8. + Local Set Primitive Projections. + Record wuint := wrap { unwrap : Decimal.uint }. + Declare Scope wuint8_scope. + Declare Scope wuint8'_scope. + Delimit Scope wuint8_scope with wuint8. + Delimit Scope wuint8'_scope with wuint8'. + Section with_var. + Context (dummy : unit). + Definition wrap' := let __ := dummy in wrap. + Definition unwrap' := let __ := dummy in unwrap. + Numeral Notation wuint wrap' unwrap' : wuint8_scope. + Check let v := 0%wuint8 in v : wuint. + End with_var. + Check let v := 0%wuint8 in v : nat. + Fail Check let v := 0%wuint8 in v : wuint. + Compute wrap (Nat.to_uint 0). + + Notation wrap'' := wrap. + Notation unwrap'' := unwrap. + Numeral Notation wuint wrap'' unwrap'' : wuint8'_scope. + Check let v := 0%wuint8' in v : wuint. +End Test8. + +Module Test9. + Declare Scope wuint9_scope. + Declare Scope wuint9'_scope. + Delimit Scope wuint9_scope with wuint9. + Delimit Scope wuint9'_scope with wuint9'. + Section with_let. + Local Set Primitive Projections. + Record wuint := wrap { unwrap : Decimal.uint }. + Let wrap' := wrap. + Let unwrap' := unwrap. + Local Notation wrap'' := wrap. + Local Notation unwrap'' := unwrap. + Numeral Notation wuint wrap' unwrap' : wuint9_scope. + Check let v := 0%wuint9 in v : wuint. + Numeral Notation wuint wrap'' unwrap'' : wuint9'_scope. + Check let v := 0%wuint9' in v : wuint. + End with_let. + Check let v := 0%wuint9 in v : nat. + Fail Check let v := 0%wuint9 in v : wuint. +End Test9. + +Module Test10. + (* Test that it is only a warning to add abstract after to an optional parsing function *) + Definition to_uint (v : unit) := Nat.to_uint 0. + Definition of_uint (v : Decimal.uint) := match Nat.of_uint v with O => Some tt | _ => None end. + Definition of_any_uint (v : Decimal.uint) := tt. + Declare Scope unit_scope. + Declare Scope unit2_scope. + Delimit Scope unit_scope with unit. + Delimit Scope unit2_scope with unit2. + Numeral Notation unit of_uint to_uint : unit_scope (abstract after 1). + Local Set Warnings Append "+abstract-large-number-no-op". + (* Check that there is actually a warning here *) + Fail Numeral Notation unit of_uint to_uint : unit2_scope (abstract after 1). + (* Check that there is no warning here *) + Numeral Notation unit of_any_uint to_uint : unit2_scope (abstract after 1). +End Test10. + +Module Test11. + (* Test that numeral notations don't work on proof-local variables, especially not ones containing evars *) + Inductive unit11 := tt11. + Declare Scope unit11_scope. + Delimit Scope unit11_scope with unit11. + Goal True. + evar (to_uint : unit11 -> Decimal.uint). + evar (of_uint : Decimal.uint -> unit11). + Fail Numeral Notation unit11 of_uint to_uint : uint11_scope. + exact I. + Unshelve. + all: solve [ constructor ]. + Qed. +End Test11. + +Module Test12. + (* Test for numeral notations on context variables *) + Declare Scope test12_scope. + Delimit Scope test12_scope with test12. + Section test12. + Context (to_uint : unit -> Decimal.uint) (of_uint : Decimal.uint -> unit). + + Numeral Notation unit of_uint to_uint : test12_scope. + Check let v := 1%test12 in v : unit. + End test12. +End Test12. + +Module Test13. + (* Test for numeral notations on notations which do not denote references *) + Declare Scope test13_scope. + Declare Scope test13'_scope. + Declare Scope test13''_scope. + Delimit Scope test13_scope with test13. + Delimit Scope test13'_scope with test13'. + Delimit Scope test13''_scope with test13''. + Definition to_uint (x y : unit) : Decimal.uint := Nat.to_uint O. + Definition of_uint (x : Decimal.uint) : unit := tt. + Definition to_uint_good := to_uint tt. + Notation to_uint' := (to_uint tt). + Notation to_uint'' := (to_uint _). + Numeral Notation unit of_uint to_uint_good : test13_scope. + Check let v := 0%test13 in v : unit. + Fail Numeral Notation unit of_uint to_uint' : test13'_scope. + Fail Check let v := 0%test13' in v : unit. + Fail Numeral Notation unit of_uint to_uint'' : test13''_scope. + Fail Check let v := 0%test13'' in v : unit. +End Test13. + +Module Test14. + (* Test that numeral notations follow [Import], not [Require], and + also test that [Local Numeral Notation]s do not escape modules + nor sections. *) + Declare Scope test14_scope. + Declare Scope test14'_scope. + Declare Scope test14''_scope. + Declare Scope test14'''_scope. + Delimit Scope test14_scope with test14. + Delimit Scope test14'_scope with test14'. + Delimit Scope test14''_scope with test14''. + Delimit Scope test14'''_scope with test14'''. + Module Inner. + Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. + Definition of_uint (x : Decimal.uint) : unit := tt. + Local Numeral Notation unit of_uint to_uint : test14_scope. + Global Numeral Notation unit of_uint to_uint : test14'_scope. + Check let v := 0%test14 in v : unit. + Check let v := 0%test14' in v : unit. + End Inner. + Fail Check let v := 0%test14 in v : unit. + Fail Check let v := 0%test14' in v : unit. + Import Inner. + Fail Check let v := 0%test14 in v : unit. + Check let v := 0%test14' in v : unit. + Section InnerSection. + Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. + Definition of_uint (x : Decimal.uint) : unit := tt. + Local Numeral Notation unit of_uint to_uint : test14''_scope. + Fail Global Numeral Notation unit of_uint to_uint : test14'''_scope. + Check let v := 0%test14'' in v : unit. + Fail Check let v := 0%test14''' in v : unit. + End InnerSection. + Fail Check let v := 0%test14'' in v : unit. + Fail Check let v := 0%test14''' in v : unit. +End Test14. + +Module Test15. + (** Test module include *) + Declare Scope test15_scope. + Delimit Scope test15_scope with test15. + Module Inner. + Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. + Definition of_uint (x : Decimal.uint) : unit := tt. + Numeral Notation unit of_uint to_uint : test15_scope. + Check let v := 0%test15 in v : unit. + End Inner. + Module Inner2. + Include Inner. + Check let v := 0%test15 in v : unit. + End Inner2. + Import Inner Inner2. + Check let v := 0%test15 in v : unit. +End Test15. + +Module Test16. + (** Test functors *) + Declare Scope test16_scope. + Delimit Scope test16_scope with test16. + Module Type A. + Axiom T : Set. + Axiom t : T. + End A. + Module F (a : A). + Inductive Foo := foo (_ : a.T). + Definition to_uint (x : Foo) : Decimal.uint := Nat.to_uint O. + Definition of_uint (x : Decimal.uint) : Foo := foo a.t. + Global Numeral Notation Foo of_uint to_uint : test16_scope. + Check let v := 0%test16 in v : Foo. + End F. + Module a <: A. + Definition T : Set := unit. + Definition t : T := tt. + End a. + Module Import f := F a. + (** Ideally this should work, but it should definitely not anomaly *) + Fail Check let v := 0%test16 in v : Foo. +End Test16. + +Require Import Coq.Numbers.Cyclic.Int63.Int63. +Module Test17. + (** Test int63 *) + Declare Scope test17_scope. + Declare Scope test17_scope. + Delimit Scope test17_scope with test17. + Local Set Primitive Projections. + Record myint63 := of_int { to_int : int }. + Numeral Notation myint63 of_int to_int : test17_scope. + Check let v := 0%test17 in v : myint63. +End Test17. + +Module Test18. + (** Test https://github.com/coq/coq/issues/9840 *) + Record Q := { num : nat ; den : nat ; reduced : Nat.gcd num den = 1 }. + Declare Scope Q_scope. + Delimit Scope Q_scope with Q. + + Definition nat_eq_dec (x y : nat) : {x = y} + {x <> y}. + Proof. decide equality. Defined. + + Definition transparentify {A} (D : {A} + {not A}) (H : A) : A := + match D with + | left pf => pf + | right npf => match npf H with end + end. + + Axiom gcd_good : forall x, Nat.gcd x 1 = 1. + + Definition Q_of_nat (x : nat) : Q := {| num := x ; den := 1 ; reduced := transparentify (nat_eq_dec _ _) (gcd_good _) |}. + Definition nat_of_Q (x : Q) : option nat + := if Nat.eqb x.(den) 1 then Some (x.(num)) else None. + Definition Q_of_uint (x : Decimal.uint) : Q := Q_of_nat (Nat.of_uint x). + Definition uint_of_Q (x : Q) : option Decimal.uint + := option_map Nat.to_uint (nat_of_Q x). + + Numeral Notation Q Q_of_uint uint_of_Q : Q_scope. + + Check let v := 0%Q in v : Q. + Check let v := 1%Q in v : Q. + Check let v := 2%Q in v : Q. + Check let v := 3%Q in v : Q. + Check let v := 4%Q in v : Q. + Compute let v := 0%Q in (num v, den v). + Compute let v := 1%Q in (num v, den v). + Compute let v := 2%Q in (num v, den v). + Compute let v := 3%Q in (num v, den v). + Compute let v := 4%Q in (num v, den v). +End Test18. + +Require Import Coq.Lists.List. +Require Import Coq.ZArith.ZArith. +Module Test19. + (** Test another thing related to https://github.com/coq/coq/issues/9840 *) + Record Zlike := { summands : list Z }. + Declare Scope Zlike_scope. + Delimit Scope Zlike_scope with Zlike. + + Definition Z_of_Zlike (x : Zlike) := List.fold_right Z.add 0%Z (summands x). + Definition Zlike_of_Z (x : Z) := {| summands := cons x nil |}. + + Numeral Notation Zlike Zlike_of_Z Z_of_Zlike : Zlike_scope. + + Check let v := (-1)%Zlike in v : Zlike. + Check let v := 0%Zlike in v : Zlike. + Check let v := 1%Zlike in v : Zlike. + Check let v := 2%Zlike in v : Zlike. + Check let v := 3%Zlike in v : Zlike. + Check let v := 4%Zlike in v : Zlike. + Check {| summands := (cons 1 (cons 2 (cons (-1) nil)))%Z |}. + Check {| summands := nil |}. +End Test19. diff --git a/test-suite/success/NumeralNotations.v b/test-suite/success/NumeralNotations.v deleted file mode 100644 index 7b857c70c5..0000000000 --- a/test-suite/success/NumeralNotations.v +++ /dev/null @@ -1,313 +0,0 @@ -(* Test that we fail, rather than raising anomalies, on opaque terms during interpretation *) - -(* https://github.com/coq/coq/pull/8064#discussion_r202497516 *) -Module Test1. - Axiom hold : forall {A B C}, A -> B -> C. - Definition opaque3 (x : Decimal.int) : Decimal.int := hold x (fix f (x : nat) : nat := match x with O => O | S n => S (f n) end). - Numeral Notation Decimal.int opaque3 opaque3 : opaque_scope. - Delimit Scope opaque_scope with opaque. - Fail Check 1%opaque. -End Test1. - -(* https://github.com/coq/coq/pull/8064#discussion_r202497990 *) -Module Test2. - Axiom opaque4 : option Decimal.int. - Definition opaque6 (x : Decimal.int) : option Decimal.int := opaque4. - Numeral Notation Decimal.int opaque6 opaque6 : opaque_scope. - Delimit Scope opaque_scope with opaque. - Open Scope opaque_scope. - Fail Check 1%opaque. -End Test2. - -Module Test3. - Inductive silly := SILLY (v : Decimal.uint) (f : forall A, A -> A). - Definition to_silly (v : Decimal.uint) := SILLY v (fun _ x => x). - Definition of_silly (v : silly) := match v with SILLY v _ => v end. - Numeral Notation silly to_silly of_silly : silly_scope. - Delimit Scope silly_scope with silly. - Fail Check 1%silly. -End Test3. - - -Module Test4. - Polymorphic NonCumulative Inductive punit := ptt. - Polymorphic Definition pto_punit (v : Decimal.uint) : option punit := match Nat.of_uint v with O => Some ptt | _ => None end. - Polymorphic Definition pto_punit_all (v : Decimal.uint) : punit := ptt. - Polymorphic Definition pof_punit (v : punit) : Decimal.uint := Nat.to_uint 0. - Definition to_punit (v : Decimal.uint) : option punit := match Nat.of_uint v with O => Some ptt | _ => None end. - Definition of_punit (v : punit) : Decimal.uint := Nat.to_uint 0. - Polymorphic Definition pto_unit (v : Decimal.uint) : option unit := match Nat.of_uint v with O => Some tt | _ => None end. - Polymorphic Definition pof_unit (v : unit) : Decimal.uint := Nat.to_uint 0. - Definition to_unit (v : Decimal.uint) : option unit := match Nat.of_uint v with O => Some tt | _ => None end. - Definition of_unit (v : unit) : Decimal.uint := Nat.to_uint 0. - Numeral Notation punit to_punit of_punit : pto. - Numeral Notation punit pto_punit of_punit : ppo. - Numeral Notation punit to_punit pof_punit : ptp. - Numeral Notation punit pto_punit pof_punit : ppp. - Numeral Notation unit to_unit of_unit : uto. - Delimit Scope pto with pto. - Delimit Scope ppo with ppo. - Delimit Scope ptp with ptp. - Delimit Scope ppp with ppp. - Delimit Scope uto with uto. - Check let v := 0%pto in v : punit. - Check let v := 0%ppo in v : punit. - Check let v := 0%ptp in v : punit. - Check let v := 0%ppp in v : punit. - Check let v := 0%uto in v : unit. - Fail Check 1%uto. - Fail Check (-1)%uto. - Numeral Notation unit pto_unit of_unit : upo. - Numeral Notation unit to_unit pof_unit : utp. - Numeral Notation unit pto_unit pof_unit : upp. - Delimit Scope upo with upo. - Delimit Scope utp with utp. - Delimit Scope upp with upp. - Check let v := 0%upo in v : unit. - Check let v := 0%utp in v : unit. - Check let v := 0%upp in v : unit. - - Polymorphic Definition pto_punits := pto_punit_all@{Set}. - Polymorphic Definition pof_punits := pof_punit@{Set}. - Numeral Notation punit pto_punits pof_punits : ppps (abstract after 1). - Delimit Scope ppps with ppps. - Universe u. - Constraint Set < u. - Check let v := 0%ppps in v : punit@{u}. (* Check that universes are refreshed *) - Fail Check let v := 1%ppps in v : punit@{u}. (* Note that universes are not refreshed here *) -End Test4. - -Module Test5. - Check S. (* At one point gave Error: Anomaly "Uncaught exception Pretype_errors.PretypeError(_, _, _)." Please report at http://coq.inria.fr/bugs/. *) -End Test5. - -Module Test6. - (* Check that numeral notations on enormous terms don't take forever to print/parse *) - (* Ackerman definition from https://stackoverflow.com/a/10303475/377022 *) - Fixpoint ack (n m : nat) : nat := - match n with - | O => S m - | S p => let fix ackn (m : nat) := - match m with - | O => ack p 1 - | S q => ack p (ackn q) - end - in ackn m - end. - - Timeout 1 Check (S (ack 4 4)). (* should be instantaneous *) - - Local Set Primitive Projections. - Record > wnat := wrap { unwrap :> nat }. - Definition to_uint (x : wnat) : Decimal.uint := Nat.to_uint x. - Definition of_uint (x : Decimal.uint) : wnat := Nat.of_uint x. - Module Export Scopes. - Delimit Scope wnat_scope with wnat. - End Scopes. - Module Export Notations. - Export Scopes. - Numeral Notation wnat of_uint to_uint : wnat_scope (abstract after 5000). - End Notations. - Check let v := 0%wnat in v : wnat. - Check wrap O. - Timeout 1 Check wrap (ack 4 4). (* should be instantaneous *) -End Test6. - -Module Test6_2. - Import Test6.Scopes. - Check Test6.wrap 0. - Import Test6.Notations. - Check let v := 0%wnat in v : Test6.wnat. -End Test6_2. - -Module Test7. - Local Set Primitive Projections. - Record wuint := wrap { unwrap : Decimal.uint }. - Delimit Scope wuint_scope with wuint. - Numeral Notation wuint wrap unwrap : wuint_scope. - Check let v := 0%wuint in v : wuint. - Check let v := 1%wuint in v : wuint. -End Test7. - -Module Test8. - Local Set Primitive Projections. - Record wuint := wrap { unwrap : Decimal.uint }. - Delimit Scope wuint8_scope with wuint8. - Delimit Scope wuint8'_scope with wuint8'. - Section with_var. - Context (dummy : unit). - Definition wrap' := let __ := dummy in wrap. - Definition unwrap' := let __ := dummy in unwrap. - Numeral Notation wuint wrap' unwrap' : wuint8_scope. - Check let v := 0%wuint8 in v : wuint. - End with_var. - Check let v := 0%wuint8 in v : nat. - Fail Check let v := 0%wuint8 in v : wuint. - Compute wrap (Nat.to_uint 0). - - Notation wrap'' := wrap. - Notation unwrap'' := unwrap. - Numeral Notation wuint wrap'' unwrap'' : wuint8'_scope. - Check let v := 0%wuint8' in v : wuint. -End Test8. - -Module Test9. - Delimit Scope wuint9_scope with wuint9. - Delimit Scope wuint9'_scope with wuint9'. - Section with_let. - Local Set Primitive Projections. - Record wuint := wrap { unwrap : Decimal.uint }. - Let wrap' := wrap. - Let unwrap' := unwrap. - Local Notation wrap'' := wrap. - Local Notation unwrap'' := unwrap. - Numeral Notation wuint wrap' unwrap' : wuint9_scope. - Check let v := 0%wuint9 in v : wuint. - Numeral Notation wuint wrap'' unwrap'' : wuint9'_scope. - Check let v := 0%wuint9' in v : wuint. - End with_let. - Check let v := 0%wuint9 in v : nat. - Fail Check let v := 0%wuint9 in v : wuint. -End Test9. - -Module Test10. - (* Test that it is only a warning to add abstract after to an optional parsing function *) - Definition to_uint (v : unit) := Nat.to_uint 0. - Definition of_uint (v : Decimal.uint) := match Nat.of_uint v with O => Some tt | _ => None end. - Definition of_any_uint (v : Decimal.uint) := tt. - Delimit Scope unit_scope with unit. - Delimit Scope unit2_scope with unit2. - Numeral Notation unit of_uint to_uint : unit_scope (abstract after 1). - Local Set Warnings Append "+abstract-large-number-no-op". - (* Check that there is actually a warning here *) - Fail Numeral Notation unit of_uint to_uint : unit2_scope (abstract after 1). - (* Check that there is no warning here *) - Numeral Notation unit of_any_uint to_uint : unit2_scope (abstract after 1). -End Test10. - -Module Test11. - (* Test that numeral notations don't work on proof-local variables, especially not ones containing evars *) - Inductive unit11 := tt11. - Delimit Scope unit11_scope with unit11. - Goal True. - evar (to_uint : unit11 -> Decimal.uint). - evar (of_uint : Decimal.uint -> unit11). - Fail Numeral Notation unit11 of_uint to_uint : uint11_scope. - exact I. - Unshelve. - all: solve [ constructor ]. - Qed. -End Test11. - -Module Test12. - (* Test for numeral notations on context variables *) - Delimit Scope test12_scope with test12. - Section test12. - Context (to_uint : unit -> Decimal.uint) (of_uint : Decimal.uint -> unit). - - Numeral Notation unit of_uint to_uint : test12_scope. - Check let v := 1%test12 in v : unit. - End test12. -End Test12. - -Module Test13. - (* Test for numeral notations on notations which do not denote references *) - Delimit Scope test13_scope with test13. - Delimit Scope test13'_scope with test13'. - Delimit Scope test13''_scope with test13''. - Definition to_uint (x y : unit) : Decimal.uint := Nat.to_uint O. - Definition of_uint (x : Decimal.uint) : unit := tt. - Definition to_uint_good := to_uint tt. - Notation to_uint' := (to_uint tt). - Notation to_uint'' := (to_uint _). - Numeral Notation unit of_uint to_uint_good : test13_scope. - Check let v := 0%test13 in v : unit. - Fail Numeral Notation unit of_uint to_uint' : test13'_scope. - Fail Check let v := 0%test13' in v : unit. - Fail Numeral Notation unit of_uint to_uint'' : test13''_scope. - Fail Check let v := 0%test13'' in v : unit. -End Test13. - -Module Test14. - (* Test that numeral notations follow [Import], not [Require], and - also test that [Local Numeral Notation]s do not escape modules - nor sections. *) - Delimit Scope test14_scope with test14. - Delimit Scope test14'_scope with test14'. - Delimit Scope test14''_scope with test14''. - Delimit Scope test14'''_scope with test14'''. - Module Inner. - Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. - Definition of_uint (x : Decimal.uint) : unit := tt. - Local Numeral Notation unit of_uint to_uint : test14_scope. - Global Numeral Notation unit of_uint to_uint : test14'_scope. - Check let v := 0%test14 in v : unit. - Check let v := 0%test14' in v : unit. - End Inner. - Fail Check let v := 0%test14 in v : unit. - Fail Check let v := 0%test14' in v : unit. - Import Inner. - Fail Check let v := 0%test14 in v : unit. - Check let v := 0%test14' in v : unit. - Section InnerSection. - Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. - Definition of_uint (x : Decimal.uint) : unit := tt. - Local Numeral Notation unit of_uint to_uint : test14''_scope. - Fail Global Numeral Notation unit of_uint to_uint : test14'''_scope. - Check let v := 0%test14'' in v : unit. - Fail Check let v := 0%test14''' in v : unit. - End InnerSection. - Fail Check let v := 0%test14'' in v : unit. - Fail Check let v := 0%test14''' in v : unit. -End Test14. - -Module Test15. - (** Test module include *) - Delimit Scope test15_scope with test15. - Module Inner. - Definition to_uint (x : unit) : Decimal.uint := Nat.to_uint O. - Definition of_uint (x : Decimal.uint) : unit := tt. - Numeral Notation unit of_uint to_uint : test15_scope. - Check let v := 0%test15 in v : unit. - End Inner. - Module Inner2. - Include Inner. - Check let v := 0%test15 in v : unit. - End Inner2. - Import Inner Inner2. - Check let v := 0%test15 in v : unit. -End Test15. - -Module Test16. - (** Test functors *) - Delimit Scope test16_scope with test16. - Module Type A. - Axiom T : Set. - Axiom t : T. - End A. - Module F (a : A). - Inductive Foo := foo (_ : a.T). - Definition to_uint (x : Foo) : Decimal.uint := Nat.to_uint O. - Definition of_uint (x : Decimal.uint) : Foo := foo a.t. - Global Numeral Notation Foo of_uint to_uint : test16_scope. - Check let v := 0%test16 in v : Foo. - End F. - Module a <: A. - Definition T : Set := unit. - Definition t : T := tt. - End a. - Module Import f := F a. - (** Ideally this should work, but it should definitely not anomaly *) - Fail Check let v := 0%test16 in v : Foo. -End Test16. - -Require Import Coq.Numbers.Cyclic.Int63.Int63. -Module Test17. - (** Test int63 *) - Declare Scope test17_scope. - Delimit Scope test17_scope with test17. - Local Set Primitive Projections. - Record myint63 := of_int { to_int : int }. - Numeral Notation myint63 of_int to_int : test17_scope. - Check let v := 0%test17 in v : myint63. -End Test17. -- cgit v1.2.3