From d67f446540543024c8afceff65c2356055ecd2bf Mon Sep 17 00:00:00 2001 From: notin Date: Thu, 24 Jan 2008 13:21:32 +0000 Subject: Fermeture du bug #1754 git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10472 85f007b7-540e-0410-9357-904b9bb8a0f7 --- test-suite/bugs/closed/shouldsucceed/1754.v | 24 ++++++++++++++++++++++++ test-suite/bugs/opened/shouldnotfail/1754.v | 24 ------------------------ 2 files changed, 24 insertions(+), 24 deletions(-) create mode 100644 test-suite/bugs/closed/shouldsucceed/1754.v delete mode 100644 test-suite/bugs/opened/shouldnotfail/1754.v diff --git a/test-suite/bugs/closed/shouldsucceed/1754.v b/test-suite/bugs/closed/shouldsucceed/1754.v new file mode 100644 index 0000000000..06b8dce851 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/1754.v @@ -0,0 +1,24 @@ +Axiom hp : Set. +Axiom cont : nat -> hp -> Prop. +Axiom sconj : (hp -> Prop) -> (hp -> Prop) -> hp -> Prop. +Axiom sconjImpl : forall h A B, + (sconj A B) h -> forall (A' B': hp -> Prop), + (forall h', A h' -> A' h') -> + (forall h', B h' -> B' h') -> + (sconj A' B') h. + +Definition cont' (h:hp) := exists y, cont y h. + +Lemma foo : forall h x y A, + (sconj (cont x) (sconj (cont y) A)) h -> + (sconj cont' (sconj cont' A)) h. +Proof. + intros h x y A H. + eapply sconjImpl. + 2:intros h' Hp'; econstructor; apply Hp'. + 2:intros h' Hp'; eapply sconjImpl. + 3:intros h'' Hp''; econstructor; apply Hp''. + 3:intros h'' Hp''; apply Hp''. + 2:apply Hp'. + clear H. +Admitted. diff --git a/test-suite/bugs/opened/shouldnotfail/1754.v b/test-suite/bugs/opened/shouldnotfail/1754.v deleted file mode 100644 index 06b8dce851..0000000000 --- a/test-suite/bugs/opened/shouldnotfail/1754.v +++ /dev/null @@ -1,24 +0,0 @@ -Axiom hp : Set. -Axiom cont : nat -> hp -> Prop. -Axiom sconj : (hp -> Prop) -> (hp -> Prop) -> hp -> Prop. -Axiom sconjImpl : forall h A B, - (sconj A B) h -> forall (A' B': hp -> Prop), - (forall h', A h' -> A' h') -> - (forall h', B h' -> B' h') -> - (sconj A' B') h. - -Definition cont' (h:hp) := exists y, cont y h. - -Lemma foo : forall h x y A, - (sconj (cont x) (sconj (cont y) A)) h -> - (sconj cont' (sconj cont' A)) h. -Proof. - intros h x y A H. - eapply sconjImpl. - 2:intros h' Hp'; econstructor; apply Hp'. - 2:intros h' Hp'; eapply sconjImpl. - 3:intros h'' Hp''; econstructor; apply Hp''. - 3:intros h'' Hp''; apply Hp''. - 2:apply Hp'. - clear H. -Admitted. -- cgit v1.2.3