From c236b51348d2a39d8f105ef0c4e8a53fabc6e285 Mon Sep 17 00:00:00 2001
From: Hugo Herbelin
Date: Tue, 15 Jul 2014 18:15:26 +0200
Subject: Added a (constructive) proof of Weak Konig's lemma for decidable
trees. Renamed Fan.v into WeakFan.v since this was a proof of Weak Fan
Theorem after all.
---
doc/stdlib/index-list.html.template | 3 +-
theories/Logic/Fan.v | 107 ------------------------------------
theories/Logic/vo.itarget | 3 +-
3 files changed, 4 insertions(+), 109 deletions(-)
delete mode 100644 theories/Logic/Fan.v
diff --git a/doc/stdlib/index-list.html.template b/doc/stdlib/index-list.html.template
index c3b2aad582..75b5e7fea7 100644
--- a/doc/stdlib/index-list.html.template
+++ b/doc/stdlib/index-list.html.template
@@ -68,7 +68,8 @@ through the Require Import command.
theories/Logic/IndefiniteDescription.v
theories/Logic/FunctionalExtensionality.v
theories/Logic/ExtensionalityFacts.v
- theories/Logic/Fan.v
+ theories/Logic/WeakFan.v
+ theories/Logic/WKL.v
theories/Logic/FinFun.v
diff --git a/theories/Logic/Fan.v b/theories/Logic/Fan.v
deleted file mode 100644
index 27b2d64fb0..0000000000
--- a/theories/Logic/Fan.v
+++ /dev/null
@@ -1,107 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* Prop :=
-| now l : P l -> inductively_barred P l
-| propagate l :
- inductively_barred P (true::l) ->
- inductively_barred P (false::l) ->
- inductively_barred P l.
-
-(** [approx X l] says that l is a boolean representation of a prefix of X *)
-
-Fixpoint approx X (l:list bool) :=
- match l with
- | [] => True
- | b::l => approx X l /\ (if b then X (length l) else ~ X (length l))
- end.
-
-(** [barred P] means that for any infinite path represented as a predicate,
- the property P holds for some prefix of the path *)
-
-Definition barred P :=
- forall (X:nat -> Prop), exists l, approx X l /\ P l.
-
-(** The proof proceeds by building a set Y of finite paths
- approximating either the smallest unbarred infinite path in P, if
- there is one (taking true>false), or the path true::true::... if P
- happens to be inductively_barred *)
-
-Fixpoint Y P (l:list bool) :=
- match l with
- | [] => True
- | b::l =>
- Y P l /\
- if b then inductively_barred P (false::l) else ~ inductively_barred P (false::l)
- end.
-
-Lemma Y_unique : forall P l1 l2, length l1 = length l2 -> Y P l1 -> Y P l2 -> l1 = l2.
-Proof.
-induction l1, l2.
-- trivial.
-- discriminate.
-- discriminate.
-- intros H (HY1,H1) (HY2,H2).
- injection H as H.
- pose proof (IHl1 l2 H HY1 HY2). clear HY1 HY2 H IHl1.
- subst l1.
- f_equal.
- destruct a, b; firstorder.
-Qed.
-
-(** X is the translation of Y as a predicate *)
-
-Definition X P n := exists l, length l = n /\ Y P (true::l).
-
-Lemma Y_approx : forall P l, approx (X P) l -> Y P l.
-Proof.
-induction l.
-- trivial.
-- intros (H,Hb). split.
- + auto.
- + unfold X in Hb.
- destruct a.
- * destruct Hb as (l',(Hl',(HYl',HY))).
- rewrite <- (Y_unique P l' l Hl'); auto.
- * firstorder.
-Qed.
-
-Theorem FanTheorem : forall P, barred P -> inductively_barred P [].
-Proof.
-intros P Hbar.
-destruct (Hbar (X P)) as (l,(Hd,HP)).
-assert (inductively_barred P l) by (apply (now P l), HP).
-clear Hbar HP.
-induction l.
-- assumption.
-- destruct Hd as (Hd,HX).
- apply (IHl Hd). clear IHl.
- destruct a; unfold X in HX; simpl in HX.
- + apply propagate.
- * apply H.
- * destruct HX as (l',(Hl,(HY,Ht))); firstorder.
- apply Y_approx in Hd. rewrite <- (Y_unique P l' l Hl); trivial.
- + destruct HX. exists l. split; auto using Y_approx.
-Qed.
diff --git a/theories/Logic/vo.itarget b/theories/Logic/vo.itarget
index 488fd908ee..6f7eba9040 100644
--- a/theories/Logic/vo.itarget
+++ b/theories/Logic/vo.itarget
@@ -16,7 +16,8 @@ Epsilon.vo
Eqdep_dec.vo
EqdepFacts.vo
Eqdep.vo
-Fan.vo
+WeakFan.vo
+WKL.vo
FunctionalExtensionality.vo
Hurkens.vo
IndefiniteDescription.vo
--
cgit v1.2.3