From c690a68ba0b78b913cbcb60f7508d431071d4c79 Mon Sep 17 00:00:00 2001
From: Vincent Semeria
Date: Fri, 4 Oct 2019 18:29:58 +0200
Subject: Replace classical reals quotient axioms by functional extensionality.
Define homotopy propositions and homotopy sets. Rename local variable R in
test Nsatz, to avoid a name collision with the type of real numbers.
---
.../10-standard-library/10827-dedekind-reals.rst | 11 +
doc/stdlib/index-list.html.template | 3 +-
plugins/syntax/r_syntax.ml | 2 +-
test-suite/success/Nsatz.v | 10 +-
theories/Logic/HLevels.v | 146 +
theories/Reals/ClassicalDedekindReals.v | 465 ++++
theories/Reals/ConstructiveCauchyReals.v | 40 +-
theories/Reals/ConstructiveRIneq.v | 2817 --------------------
theories/Reals/ConstructiveRcomplete.v | 33 +
theories/Reals/ConstructiveRealsMorphisms.v | 2 +-
theories/Reals/RIneq.v | 237 +-
theories/Reals/Raxioms.v | 248 +-
theories/Reals/Rdefinitions.v | 88 +-
13 files changed, 1021 insertions(+), 3081 deletions(-)
create mode 100644 doc/changelog/10-standard-library/10827-dedekind-reals.rst
create mode 100644 theories/Logic/HLevels.v
create mode 100644 theories/Reals/ClassicalDedekindReals.v
delete mode 100644 theories/Reals/ConstructiveRIneq.v
diff --git a/doc/changelog/10-standard-library/10827-dedekind-reals.rst b/doc/changelog/10-standard-library/10827-dedekind-reals.rst
new file mode 100644
index 0000000000..5d8467025b
--- /dev/null
+++ b/doc/changelog/10-standard-library/10827-dedekind-reals.rst
@@ -0,0 +1,11 @@
+- New module `Reals.ClassicalDedekindReals` defines Dedekind real numbers
+ as boolean-values functions along with 3 logical axioms: limited principle
+ of omniscience, excluded middle of negations and functional extensionality.
+ The exposed type :g:`R` in module :g:`Reals.Rdefinitions` is those
+ Dedekind reals, hidden behind an opaque module.
+ Classical Dedekind reals are a quotient of constructive reals, which allows
+ to transport many constructive proofs to the classical case.
+
+ See `#10827 `_, by Vincent Semeria,
+ based on discussions with Guillaume Melquiond, Bas Spitters and Hugo Herbelin,
+ code review by Hugo Herbelin.
diff --git a/doc/stdlib/index-list.html.template b/doc/stdlib/index-list.html.template
index d1b98b94a3..df7cda9aad 100644
--- a/doc/stdlib/index-list.html.template
+++ b/doc/stdlib/index-list.html.template
@@ -68,6 +68,7 @@ through the Require Import command.
theories/Logic/WKL.v
theories/Logic/FinFun.v
theories/Logic/PropFacts.v
+ theories/Logic/HLevels.v
Structures:
@@ -518,8 +519,8 @@ through the Require Import command.
theories/Reals/ConstructiveRealsMorphisms.v
theories/Reals/ConstructiveCauchyReals.v
theories/Reals/ConstructiveCauchyRealsMult.v
+ theories/Reals/ClassicalDedekindReals.v
theories/Reals/Raxioms.v
- theories/Reals/ConstructiveRIneq.v
theories/Reals/ConstructiveRealsLUB.v
theories/Reals/RIneq.v
theories/Reals/DiscrR.v
diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml
index 66db924051..70c1077106 100644
--- a/plugins/syntax/r_syntax.ml
+++ b/plugins/syntax/r_syntax.ml
@@ -102,7 +102,7 @@ let bigint_of_z c = match DAst.get c with
let rdefinitions = ["Coq";"Reals";"Rdefinitions"]
let r_modpath = MPfile (make_dir rdefinitions)
let r_base_modpath = MPdot (r_modpath, Label.make "RbaseSymbolsImpl")
-let r_path = make_path rdefinitions "R"
+let r_path = make_path ["Coq";"Reals";"Rdefinitions";"RbaseSymbolsImpl"] "R"
let glob_IZR = GlobRef.ConstRef (Constant.make2 r_modpath @@ Label.make "IZR")
let glob_Rmult = GlobRef.ConstRef (Constant.make2 r_base_modpath @@ Label.make "Rmult")
diff --git a/test-suite/success/Nsatz.v b/test-suite/success/Nsatz.v
index 381fbabe72..998f3f7dd1 100644
--- a/test-suite/success/Nsatz.v
+++ b/test-suite/success/Nsatz.v
@@ -419,13 +419,13 @@ Qed.
-Lemma Desargues: forall A B C A1 B1 C1 P Q R S:point,
+Lemma Desargues: forall A B C A1 B1 C1 P Q T S:point,
X S = 0 -> Y S = 0 -> Y A = 0 ->
collinear A S A1 -> collinear B S B1 -> collinear C S C1 ->
collinear B1 C1 P -> collinear B C P ->
collinear A1 C1 Q -> collinear A C Q ->
- collinear A1 B1 R -> collinear A B R ->
- collinear P Q R
+ collinear A1 B1 T -> collinear A B T ->
+ collinear P Q T
\/ X A = X B \/ X A = X C \/ X B = X C \/ X A = 0 \/ Y B = 0 \/ Y C = 0
\/ collinear S B C \/ parallel A C A1 C1 \/ parallel A B A1 B1.
Proof.
@@ -440,8 +440,8 @@ let lv := rev (X A
:: Y A1 :: X A1
:: Y B1
:: Y C1
- :: X R
- :: Y R
+ :: X T
+ :: Y T
:: X Q
:: Y Q :: X P :: Y P :: X C1 :: X B1 :: nil) in
nsatz with radicalmax :=1%N strategy:=0%Z
diff --git a/theories/Logic/HLevels.v b/theories/Logic/HLevels.v
new file mode 100644
index 0000000000..010c4aad6f
--- /dev/null
+++ b/theories/Logic/HLevels.v
@@ -0,0 +1,146 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* Prop),
+ (forall x:A, IsHProp (P x))
+ -> IsHProp (forall x:A, P x).
+Proof.
+ intros A P H p q. apply functional_extensionality_dep.
+ intro x. apply H.
+Qed.
+
+(* Homotopy propositions are stable by conjunction, but not by disjunction,
+ which can have a proof by the left and another proof by the right. *)
+Lemma and_hprop : forall P Q : Prop,
+ IsHProp P -> IsHProp Q -> IsHProp (P /\ Q).
+Proof.
+ intros. intros p q. destruct p,q.
+ replace p0 with p. replace q0 with q. reflexivity.
+ apply H0. apply H.
+Qed.
+
+Lemma impl_hprop : forall P Q : Prop,
+ IsHProp Q -> IsHProp (P -> Q).
+Proof.
+ intros P Q H p q. apply functional_extensionality.
+ intros. apply H.
+Qed.
+
+Lemma false_hprop : IsHProp False.
+Proof.
+ intros p q. contradiction.
+Qed.
+
+Lemma true_hprop : IsHProp True.
+Proof.
+ intros p q. destruct p,q. reflexivity.
+Qed.
+
+(* All negations are homotopy propositions. *)
+Lemma not_hprop : forall P : Type, IsHProp (P -> False).
+Proof.
+ intros P p q. apply functional_extensionality.
+ intros. contradiction.
+Qed.
+
+(* Homotopy propositions are included in homotopy sets.
+ They are the first 2 levels of a cumulative hierarchy of types
+ indexed by the natural numbers. In homotopy type theory,
+ homotopy propositions are call (-1)-types and homotopy
+ sets 0-types. *)
+Lemma hset_hprop : forall X : Type,
+ IsHProp X -> IsHSet X.
+Proof.
+ intros X H.
+ assert (forall (x y z:X) (p : y = z), eq_trans (H x y) p = H x z).
+ { intros. unfold eq_trans, eq_ind. destruct p. reflexivity. }
+ assert (forall (x y z:X) (p : y = z),
+ p = eq_trans (eq_sym (H x y)) (H x z)).
+ { intros. rewrite <- (H0 x y z p). unfold eq_trans, eq_sym, eq_ind.
+ destruct p, (H x y). reflexivity. }
+ intros x y p q.
+ rewrite (H1 x x y p), (H1 x x y q). reflexivity.
+Qed.
+
+Lemma eq_trans_cancel : forall {X : Type} {x y z : X} (p : x = y) (q r : y = z),
+ (eq_trans p q = eq_trans p r) -> q = r.
+Proof.
+ intros. destruct p. simpl in H. destruct r.
+ simpl in H. rewrite eq_trans_refl_l in H. exact H.
+Qed.
+
+Lemma hset_hOneType : forall X : Type,
+ IsHSet X -> IsHOneType X.
+Proof.
+ intros X f x y p q.
+ pose (fun a => f x y p a) as g.
+ assert (forall a (r : q = a), eq_trans (g q) r = g a).
+ { intros. destruct a. subst q. reflexivity. }
+ intros r s. pose proof (H p (eq_sym r)).
+ pose proof (H p (eq_sym s)).
+ rewrite <- H1 in H0. apply eq_trans_cancel in H0.
+ rewrite <- eq_sym_involutive. rewrite <- (eq_sym_involutive r).
+ rewrite H0. reflexivity.
+Qed.
+
+(* "IsHProp X" sounds like a proposition, because it asserts
+ a property of the type X. And indeed: *)
+Lemma hprop_hprop : forall X : Type,
+ IsHProp (IsHProp X).
+Proof.
+ intros X p q.
+ apply forall_hprop. intro x.
+ apply forall_hprop. intro y. intros f g.
+ apply (hset_hprop X p).
+Qed.
+
+Lemma hprop_hset : forall X : Type,
+ IsHProp (IsHSet X).
+Proof.
+ intros X f g.
+ apply functional_extensionality_dep. intro x.
+ apply functional_extensionality_dep. intro y.
+ apply functional_extensionality_dep. intro a.
+ apply functional_extensionality_dep. intro b.
+ apply (hset_hOneType). exact f.
+Qed.
diff --git a/theories/Reals/ClassicalDedekindReals.v b/theories/Reals/ClassicalDedekindReals.v
new file mode 100644
index 0000000000..e32def29b8
--- /dev/null
+++ b/theories/Reals/ClassicalDedekindReals.v
@@ -0,0 +1,465 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
+(* bool have all the classical properties of the
+ real numbers.
+
+ We could prove operations and theorems about them directly,
+ but instead we notice that they are a quotient of the
+ constructive Cauchy reals, from which they inherit many properties.
+*)
+
+(* The limited principle of omniscience *)
+Axiom sig_forall_dec
+ : forall (P : nat -> Prop),
+ (forall n, {P n} + {~P n})
+ -> {n | ~P n} + {forall n, P n}.
+
+Axiom sig_not_dec : forall P : Prop, { ~~P } + { ~P }.
+
+(* Try to find a surjection CReal -> lower cuts. *)
+Definition isLowerCut (f : Q -> bool) : Prop
+ := (forall q r:Q, Qle q r -> f r = true -> f q = true) (* interval *)
+ /\ ~(forall q:Q, f q = true) (* avoid positive infinity *)
+ /\ ~(forall q:Q, f q = false) (* avoid negative infinity *)
+ (* openness, the cut contains rational numbers
+ strictly lower than a real number. *)
+ /\ (forall q:Q, f q = true -> ~(forall r:Q, Qle r q \/ f r = false)).
+
+Lemma isLowerCut_hprop : forall (f : Q -> bool),
+ IsHProp (isLowerCut f).
+Proof.
+ intro f. apply and_hprop.
+ 2: apply and_hprop. 2: apply not_hprop.
+ 2: apply and_hprop. 2: apply not_hprop.
+ - apply forall_hprop. intro x.
+ apply forall_hprop. intro y.
+ apply impl_hprop. apply impl_hprop.
+ intros p q. apply eq_proofs_unicity_on.
+ intro b. destruct (f x), b.
+ left. reflexivity. right. discriminate.
+ right. discriminate. left. reflexivity.
+ - apply forall_hprop. intro q. apply impl_hprop. apply not_hprop.
+Qed.
+
+Lemma lowerCutBelow : forall f : Q -> bool,
+ isLowerCut f -> { q : Q | f q = true }.
+Proof.
+ intros.
+ destruct (sig_forall_dec (fun n:nat => f (-(Z.of_nat n # 1))%Q = false)).
+ - intro n. destruct (f (-(Z.of_nat n # 1))%Q).
+ right. discriminate. left. reflexivity.
+ - destruct s. exists (-(Z.of_nat x # 1))%Q.
+ destruct (f (-(Z.of_nat x # 1))%Q).
+ reflexivity. exfalso. apply n. reflexivity.
+ - exfalso. destruct H, H0, H1. apply H1. intro q.
+ destruct (f q) eqn:des. 2: reflexivity. exfalso.
+ destruct (Qarchimedean (-q)) as [p pmaj].
+ rewrite <- (Qplus_lt_l _ _ (q-(Z.pos p # 1))) in pmaj.
+ ring_simplify in pmaj.
+ specialize (H (- (Z.pos p#1))%Q q).
+ specialize (e (Pos.to_nat p)).
+ rewrite positive_nat_Z in e. rewrite H in e. discriminate.
+ 2: exact des. ring_simplify. apply Qlt_le_weak, pmaj.
+Qed.
+
+Lemma lowerCutAbove : forall f : Q -> bool,
+ isLowerCut f -> { q : Q | f q = false }.
+Proof.
+ intros.
+ destruct (sig_forall_dec (fun n => f (Z.of_nat n # 1)%Q = true)).
+ - intro n. destruct (f (Z.of_nat n # 1)%Q).
+ left. reflexivity. right. discriminate.
+ - destruct s. exists (Z.of_nat x # 1)%Q. destruct (f (Z.of_nat x # 1)%Q).
+ exfalso. apply n. reflexivity. reflexivity.
+ - exfalso. destruct H, H0, H1. apply H0. intro q.
+ destruct (Qarchimedean q) as [p pmaj].
+ apply (H q (Z.of_nat (Pos.to_nat p) # 1)%Q).
+ rewrite positive_nat_Z. apply Qlt_le_weak, pmaj. apply e.
+Qed.
+
+Definition DReal : Set
+ := { f : Q -> bool | isLowerCut f }.
+
+Fixpoint DRealQlim_rec (f : Q -> bool) (low : isLowerCut f) (n p : nat) { struct p }
+ : f (proj1_sig (lowerCutBelow f low) + (Z.of_nat p # Pos.of_nat (S n)))%Q = false
+ -> { q : Q | f q = true /\ f (q + (1 # Pos.of_nat (S n)))%Q = false }.
+Proof.
+ intros. destruct p.
+ - exfalso. destruct (lowerCutBelow f low); unfold proj1_sig in H.
+ destruct low. rewrite (H0 _ x) in H. discriminate. simpl.
+ apply (Qplus_le_l _ _ (-x)). ring_simplify. discriminate. exact e.
+ - destruct (f (proj1_sig (lowerCutBelow f low) + (Z.of_nat p # Pos.of_nat (S n)))%Q) eqn:des.
+ + exists (proj1_sig (lowerCutBelow f low) + (Z.of_nat p # Pos.of_nat (S n)))%Q.
+ split. exact des.
+ destruct (f (proj1_sig (lowerCutBelow f low)
+ + (Z.of_nat p # Pos.of_nat (S n)) + (1 # Pos.of_nat (S n)))%Q) eqn:d.
+ 2: reflexivity. exfalso.
+ destruct low.
+ rewrite (e _ (proj1_sig (lowerCutBelow f (conj e a)) + (Z.of_nat p # Pos.of_nat (S n)) + (1 # Pos.of_nat (S n))))%Q in H.
+ discriminate. 2: exact d. rewrite <- Qplus_assoc, Qplus_le_r.
+ rewrite Qinv_plus_distr.
+ replace (Z.of_nat p + 1)%Z with (Z.of_nat (S p))%Z. apply Qle_refl.
+ replace 1%Z with (Z.of_nat 1). rewrite <- (Nat2Z.inj_add p 1).
+ apply f_equal. rewrite Nat.add_comm. reflexivity. reflexivity.
+ + destruct (DRealQlim_rec f low n p des) as [q qmaj].
+ exists q. exact qmaj.
+Qed.
+
+Definition DRealQlim (x : DReal) (n : nat)
+ : { q : Q | proj1_sig x q = true /\ proj1_sig x (q + (1# Pos.of_nat (S n)))%Q = false }.
+Proof.
+ destruct x as [f low].
+ destruct (lowerCutAbove f low).
+ destruct (Qarchimedean (x - proj1_sig (lowerCutBelow f low))) as [p pmaj].
+ apply (DRealQlim_rec f low n ((S n) * Pos.to_nat p)).
+ destruct (lowerCutBelow f low); unfold proj1_sig; unfold proj1_sig in pmaj.
+ destruct (f (x0 + (Z.of_nat (S n * Pos.to_nat p) # Pos.of_nat (S n)))%Q) eqn:des.
+ 2: reflexivity. exfalso. destruct low.
+ rewrite (H _ (x0 + (Z.of_nat (S n * Pos.to_nat p) # Pos.of_nat (S n)))%Q) in e.
+ discriminate. 2: exact des.
+ setoid_replace (Z.of_nat (S n * Pos.to_nat p) # Pos.of_nat (S n))%Q with (Z.pos p # 1)%Q.
+ apply (Qplus_lt_l _ _ x0) in pmaj. ring_simplify in pmaj.
+ apply Qlt_le_weak, pmaj. rewrite Nat2Z.inj_mul, positive_nat_Z.
+ unfold Qeq, Qnum, Qden. rewrite Z.mul_1_r, Z.mul_comm.
+ replace (Z.of_nat (S n)) with (Z.pos (Pos.of_nat (S n))). reflexivity.
+ simpl. destruct n. reflexivity. apply f_equal.
+ apply Pos.succ_of_nat. discriminate.
+Qed.
+
+Definition DRealAbstr : CReal -> DReal.
+Proof.
+ intro x.
+ assert (forall (q : Q) (n : nat),
+ {(fun n0 : nat => (proj1_sig x (S n0) <= q + (1 # Pos.of_nat (S n0)))%Q) n} +
+ {~ (fun n0 : nat => (proj1_sig x (S n0) <= q + (1 # Pos.of_nat (S n0)))%Q) n}).
+ { intros. destruct (Qlt_le_dec (q + (1 # Pos.of_nat (S n))) (proj1_sig x (S n))).
+ right. apply (Qlt_not_le _ _ q0). left. exact q0. }
+
+ exists (fun q:Q => if sig_forall_dec (fun n:nat => Qle (proj1_sig x (S n)) (q + (1#Pos.of_nat (S n)))) (H q)
+ then true else false).
+ repeat split.
+ - intros.
+ destruct (sig_forall_dec (fun n : nat => (proj1_sig x (S n) <= q + (1 # Pos.of_nat (S n)))%Q)
+ (H q)).
+ reflexivity. exfalso.
+ destruct (sig_forall_dec (fun n : nat => (proj1_sig x (S n) <= r + (1 # Pos.of_nat (S n)))%Q)
+ (H r)).
+ destruct s. apply n.
+ apply (Qle_trans _ _ _ (q0 x0)).
+ apply Qplus_le_l. exact H0. discriminate.
+ - intro abs. destruct (Rfloor x) as [z [_ zmaj]].
+ specialize (abs (z+3 # 1)%Q).
+ destruct (sig_forall_dec (fun n : nat => (proj1_sig x (S n) <= (z+3 # 1) + (1 # Pos.of_nat (S n)))%Q)
+ (H (z+3 # 1)%Q)).
+ 2: exfalso; discriminate. clear abs. destruct s as [n nmaj]. apply nmaj.
+ rewrite <- (inject_Q_plus (z#1) 2) in zmaj.
+ apply CRealLt_asym in zmaj. rewrite <- CRealLe_not_lt in zmaj.
+ specialize (zmaj (Pos.of_nat (S n))). unfold inject_Q, proj1_sig in zmaj.
+ rewrite Nat2Pos.id in zmaj. 2: discriminate.
+ destruct x as [xn xcau]; unfold proj1_sig.
+ rewrite Qinv_plus_distr in zmaj.
+ apply (Qplus_le_l _ _ (-(z + 2 # 1))). apply (Qle_trans _ _ _ zmaj).
+ apply (Qplus_le_l _ _ (-(1 # Pos.of_nat (S n)))). apply (Qle_trans _ 1).
+ unfold Qopp, Qnum, Qden. rewrite Qinv_plus_distr.
+ unfold Qle, Qnum, Qden. apply Z2Nat.inj_le. discriminate. discriminate.
+ do 2 rewrite Z.mul_1_l. unfold Z.to_nat. rewrite Nat2Pos.id. 2: discriminate.
+ apply le_n_S, le_0_n. setoid_replace (- (z + 2 # 1))%Q with (-(z+2) #1)%Q.
+ 2: reflexivity. ring_simplify. rewrite Qinv_plus_distr.
+ replace (z + 3 + - (z + 2))%Z with 1%Z. apply Qle_refl. ring.
+ - intro abs. destruct (Rfloor x) as [z [zmaj _]].
+ specialize (abs (z-4 # 1)%Q).
+ destruct (sig_forall_dec (fun n : nat => (proj1_sig x (S n) <= (z-4 # 1) + (1 # Pos.of_nat (S n)))%Q)
+ (H (z-4 # 1)%Q)).
+ exfalso; discriminate. clear abs.
+ apply CRealLt_asym in zmaj. apply zmaj. clear zmaj.
+ exists 1%positive. unfold inject_Q, proj1_sig.
+ specialize (q O).
+ destruct x as [xn xcau]; unfold proj1_sig; unfold proj1_sig in q.
+ unfold Pos.of_nat in q. rewrite Qinv_plus_distr in q.
+ unfold Pos.to_nat; simpl. apply (Qplus_lt_l _ _ (xn 1%nat - 2)).
+ ring_simplify. rewrite Qinv_plus_distr.
+ apply (Qle_lt_trans _ _ _ q). apply Qlt_minus_iff.
+ unfold Qopp, Qnum, Qden. rewrite Qinv_plus_distr.
+ replace (z + -2 + - (z - 4 + 1))%Z with 1%Z. 2: ring. reflexivity.
+ - intros q H0 abs.
+ destruct (sig_forall_dec (fun n : nat => (proj1_sig x (S n) <= q + (1 # Pos.of_nat (S n)))%Q) (H q)).
+ 2: exfalso; discriminate. clear H0.
+ destruct x as [xn xcau]; unfold proj1_sig in abs, s.
+ destruct s as [n nmaj].
+ (* We have that q < x as real numbers. The middle
+ (q + xSn - 1/Sn)/2 is also lower than x, witnessed by the same index n. *)
+ specialize (abs ((q + xn (S n) - (1 # Pos.of_nat (S n))%Q)/2)%Q).
+ destruct abs.
+ + apply (Qmult_le_r _ _ 2) in H0. field_simplify in H0.
+ apply (Qplus_le_r _ _ ((1 # Pos.of_nat (S n)) - q)) in H0.
+ ring_simplify in H0. apply nmaj. rewrite Qplus_comm. exact H0. reflexivity.
+ + destruct (sig_forall_dec
+ (fun n0 : nat =>
+ (xn (S n0) <= (q + xn (S n) - (1 # Pos.of_nat (S n))) / 2 + (1 # Pos.of_nat (S n0)))%Q)
+ (H ((q + xn (S n) - (1 # Pos.of_nat (S n))) / 2)%Q)).
+ discriminate. clear H0. specialize (q0 n).
+ apply (Qmult_le_l _ _ 2) in q0. field_simplify in q0.
+ apply (Qplus_le_l _ _ (-xn (S n))) in q0. ring_simplify in q0.
+ contradiction. reflexivity.
+Defined.
+
+Lemma UpperAboveLower : forall (f : Q -> bool) (q r : Q),
+ isLowerCut f
+ -> f q = true
+ -> f r = false
+ -> Qlt q r.
+Proof.
+ intros. destruct H. apply Qnot_le_lt. intro abs.
+ rewrite (H r q abs) in H1. discriminate. exact H0.
+Qed.
+
+Definition DRealRepr : DReal -> CReal.
+Proof.
+ intro x. exists (fun n => proj1_sig (DRealQlim x n)).
+ intros n p q H H0.
+ destruct (DRealQlim x p), (DRealQlim x q); unfold proj1_sig.
+ destruct x as [f low]; unfold proj1_sig in a0, a.
+ apply Qabs_case.
+ - intros. apply (Qlt_le_trans _ (1 # Pos.of_nat (S q))).
+ apply (Qplus_lt_l _ _ x1). ring_simplify. apply (UpperAboveLower f).
+ exact low. apply a. apply a0. unfold Qle, Qnum, Qden.
+ do 2 rewrite Z.mul_1_l. apply Pos2Z.pos_le_pos.
+ apply Pos2Nat.inj_le. rewrite Nat2Pos.id. apply (le_trans _ _ _ H0), le_S, le_refl.
+ discriminate.
+ - intros. apply (Qlt_le_trans _ (1 # Pos.of_nat (S p))).
+ apply (Qplus_lt_l _ _ x0). ring_simplify. apply (UpperAboveLower f).
+ exact low. apply a0. apply a. unfold Qle, Qnum, Qden.
+ do 2 rewrite Z.mul_1_l. apply Pos2Z.pos_le_pos.
+ apply Pos2Nat.inj_le. rewrite Nat2Pos.id. apply (le_trans _ _ _ H), le_S, le_refl.
+ discriminate.
+Defined.
+
+Definition Rle (x y : DReal)
+ := forall q:Q, proj1_sig x q = true -> proj1_sig y q = true.
+
+Lemma Rle_antisym : forall x y : DReal,
+ Rle x y
+ -> Rle y x
+ -> x = y.
+Proof.
+ intros [f cf] [g cg] H H0. unfold Rle in H,H0; simpl in H, H0.
+ assert (f = g).
+ { apply functional_extensionality. intro q.
+ specialize (H q). specialize (H0 q).
+ destruct (f q), (g q). reflexivity.
+ exfalso. specialize (H (eq_refl _)). discriminate.
+ exfalso. specialize (H0 (eq_refl _)). discriminate.
+ reflexivity. }
+ subst g. replace cg with cf. reflexivity.
+ apply isLowerCut_hprop.
+Qed.
+
+Lemma lowerUpper : forall (f : Q -> bool) (q r : Q),
+ isLowerCut f -> Qle q r -> f q = false -> f r = false.
+Proof.
+ intros. destruct H. specialize (H q r H0). destruct (f r) eqn:desR.
+ 2: reflexivity. exfalso. specialize (H (eq_refl _)).
+ rewrite H in H1. discriminate.
+Qed.
+
+Lemma DRealOpen : forall (x : DReal) (q : Q),
+ proj1_sig x q = true
+ -> { r : Q | Qlt q r /\ proj1_sig x r = true }.
+Proof.
+ intros.
+ destruct (sig_forall_dec (fun n => Qle (proj1_sig (DRealQlim x n)) q)).
+ - intro n. destruct (DRealQlim x n); unfold proj1_sig.
+ destruct (Qlt_le_dec q x0). right. exact (Qlt_not_le _ _ q0).
+ left. exact q0.
+ - destruct s. apply Qnot_le_lt in n.
+ destruct (DRealQlim x x0); unfold proj1_sig in n.
+ exists x1. split. exact n. apply a.
+ - exfalso. destruct x as [f low]. unfold proj1_sig in H, q0.
+ destruct low, a, a. apply (n1 q H). intros.
+ destruct (Qlt_le_dec q r). 2: left; exact q1. right.
+ destruct (Qarchimedean (/(r - q))) as [p pmaj].
+ specialize (q0 (Pos.to_nat p)).
+ destruct (DRealQlim (exist _ f (conj e (conj n (conj n0 n1)))) (Pos.to_nat p))
+ as [s smaj].
+ unfold proj1_sig in smaj.
+ apply (lowerUpper f (s + (1 # Pos.of_nat (S (Pos.to_nat p))))).
+ exact (conj e (conj n (conj n0 n1))).
+ 2: apply smaj. apply (Qle_trans _ (s + (r-q))).
+ apply Qplus_le_r. apply (Qle_trans _ (1 # p)).
+ unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_l.
+ apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le.
+ rewrite Nat2Pos.id. apply le_S, le_refl. discriminate.
+ apply (Qmult_le_l _ _ ( (Z.pos p # 1) / (r-q))).
+ rewrite <- (Qmult_0_r (Z.pos p #1)). apply Qmult_lt_l.
+ reflexivity. apply Qinv_lt_0_compat.
+ unfold Qminus. rewrite <- Qlt_minus_iff. exact q1.
+ unfold Qdiv. rewrite Qmult_comm, <- Qmult_assoc.
+ rewrite (Qmult_comm (/(r-q))), Qmult_inv_r, Qmult_assoc.
+ setoid_replace ((1 # p) * (Z.pos p # 1))%Q with 1%Q.
+ 2: reflexivity. rewrite Qmult_1_l, Qmult_1_r.
+ apply Qlt_le_weak, pmaj. intro abs. apply Qlt_minus_iff in q1.
+ rewrite abs in q1. apply (Qlt_not_le _ _ q1), Qle_refl.
+ apply (Qplus_le_l _ _ (q-r)). ring_simplify. exact q0.
+Qed.
+
+Lemma DRealReprQ : forall (x : DReal) (q : Q),
+ proj1_sig x q = true
+ -> CRealLt (inject_Q q) (DRealRepr x).
+Proof.
+ intros.
+ destruct (DRealOpen x q H) as [r rmaj].
+ destruct (Qarchimedean (4/(r - q))) as [p pmaj].
+ exists p.
+ destruct x as [f low]; unfold DRealRepr, inject_Q, proj1_sig.
+ destruct (DRealQlim (exist _ f low) (Pos.to_nat p)) as [s smaj].
+ unfold proj1_sig in smaj, rmaj.
+ apply (Qplus_lt_l _ _ (q+ (1 # Pos.of_nat (S (Pos.to_nat p))))).
+ ring_simplify. rewrite <- (Qplus_comm s).
+ apply (UpperAboveLower f _ _ low). 2: apply smaj.
+ destruct low. apply (e _ r). 2: apply rmaj.
+ rewrite <- (Qplus_comm q).
+ apply (Qle_trans _ (q + (4#p))).
+ - rewrite <- Qplus_assoc. apply Qplus_le_r.
+ apply (Qle_trans _ ((2#p) + (1#p))).
+ apply Qplus_le_r.
+ unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_l.
+ apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le.
+ rewrite Nat2Pos.id. apply le_S, le_refl. discriminate.
+ rewrite Qinv_plus_distr. unfold Qle, Qnum, Qden.
+ apply Z.mul_le_mono_nonneg_r. discriminate. discriminate.
+ - apply (Qle_trans _ (q + (r-q))). 2: ring_simplify; apply Qle_refl.
+ apply Qplus_le_r.
+ apply (Qmult_le_l _ _ ( (Z.pos p # 1) / (r-q))).
+ rewrite <- (Qmult_0_r (Z.pos p #1)). apply Qmult_lt_l.
+ reflexivity. apply Qinv_lt_0_compat.
+ unfold Qminus. rewrite <- Qlt_minus_iff. apply rmaj.
+ unfold Qdiv. rewrite Qmult_comm, <- Qmult_assoc.
+ rewrite (Qmult_comm (/(r-q))), Qmult_inv_r, Qmult_assoc.
+ setoid_replace ((4 # p) * (Z.pos p # 1))%Q with 4%Q.
+ 2: reflexivity. rewrite Qmult_1_r.
+ apply Qlt_le_weak, pmaj. intro abs. destruct rmaj.
+ apply Qlt_minus_iff in H0.
+ rewrite abs in H0. apply (Qlt_not_le _ _ H0), Qle_refl.
+Qed.
+
+Lemma DRealReprQup : forall (x : DReal) (q : Q),
+ proj1_sig x q = false
+ -> CRealLe (DRealRepr x) (inject_Q q).
+Proof.
+ intros x q H [p pmaj].
+ unfold inject_Q, DRealRepr, proj1_sig in pmaj.
+ destruct (DRealQlim x (Pos.to_nat p)) as [r rmaj], rmaj.
+ clear H1. destruct x as [f low], low; unfold proj1_sig in H, H0.
+ apply (Qplus_lt_l _ _ q) in pmaj. ring_simplify in pmaj.
+ rewrite (e _ r) in H. discriminate. 2: exact H0.
+ apply Qlt_le_weak. apply (Qlt_trans _ ((2#p)+q)). 2: exact pmaj.
+ apply (Qplus_lt_l _ _ (-q)). ring_simplify. reflexivity.
+Qed.
+
+Lemma DRealQuot1 : forall x y:DReal, CRealEq (DRealRepr x) (DRealRepr y) -> x = y.
+Proof.
+ intros. destruct H. apply Rle_antisym.
+ - clear H. intros q H1. destruct (proj1_sig y q) eqn:des.
+ reflexivity. exfalso. apply H0.
+ apply (CReal_le_lt_trans _ (inject_Q q)). apply DRealReprQup.
+ exact des. apply DRealReprQ. exact H1.
+ - clear H0. intros q H1. destruct (proj1_sig x q) eqn:des.
+ reflexivity. exfalso. apply H.
+ apply (CReal_le_lt_trans _ (inject_Q q)). apply DRealReprQup.
+ exact des. apply DRealReprQ. exact H1.
+Qed.
+
+Lemma DRealAbstrFalse : forall (x : CReal) (q : Q) (n : nat),
+ proj1_sig (DRealAbstr x) q = false
+ -> (proj1_sig x (S n) <= q + (1 # Pos.of_nat (S n)))%Q.
+Proof.
+ intros. destruct x as [xn xcau].
+ unfold DRealAbstr, proj1_sig in H.
+ destruct (
+ sig_forall_dec (fun n : nat => (xn (S n) <= q + (1 # Pos.of_nat (S n)))%Q)
+ (fun n : nat =>
+ match Qlt_le_dec (q + (1 # Pos.of_nat (S n))) (xn (S n)) with
+ | left q0 => right (Qlt_not_le (q + (1 # Pos.of_nat (S n))) (xn (S n)) q0)
+ | right q0 => left q0
+ end)).
+ discriminate. apply q0.
+Qed.
+
+Lemma DRealQuot2 : forall x:CReal, CRealEq (DRealRepr (DRealAbstr x)) x.
+Proof.
+ split.
+ - intros [p pmaj]. unfold DRealRepr, proj1_sig in pmaj.
+ destruct x as [xn xcau].
+ destruct (DRealQlim (DRealAbstr (exist _ xn xcau)) (Pos.to_nat p))
+ as [q [_ qmaj]].
+ (* By pmaj, q + 1/p < x as real numbers.
+ But by qmaj x <= q + 1/(p+1), contradiction. *)
+ apply (DRealAbstrFalse _ _ (pred (Pos.to_nat p))) in qmaj.
+ unfold proj1_sig in qmaj.
+ rewrite Nat.succ_pred in qmaj.
+ apply (Qlt_not_le _ _ pmaj), (Qplus_le_l _ _ q).
+ ring_simplify. apply (Qle_trans _ _ _ qmaj).
+ rewrite <- Qplus_assoc. apply Qplus_le_r.
+ rewrite Pos2Nat.id. apply (Qle_trans _ ((1#p)+(1#p))).
+ apply Qplus_le_l. unfold Qle, Qnum, Qden.
+ do 2 rewrite Z.mul_1_l.
+ apply Pos2Z.pos_le_pos. apply Pos2Nat.inj_le.
+ rewrite Nat2Pos.id. apply le_S, le_refl. discriminate.
+ rewrite Qinv_plus_distr. apply Qle_refl.
+ intro abs. pose proof (Pos2Nat.is_pos p).
+ rewrite abs in H. inversion H.
+ - intros [p pmaj]. unfold DRealRepr, proj1_sig in pmaj.
+ destruct x as [xn xcau].
+ destruct (DRealQlim (DRealAbstr (exist _ xn xcau)) (Pos.to_nat p))
+ as [q [qmaj _]].
+ (* By pmaj, x < q - 1/p *)
+ unfold DRealAbstr, proj1_sig in qmaj.
+ destruct (
+ sig_forall_dec (fun n : nat => (xn (S n) <= q + (1 # Pos.of_nat (S n)))%Q)
+ (fun n : nat =>
+ match Qlt_le_dec (q + (1 # Pos.of_nat (S n))) (xn (S n)) with
+ | left q0 =>
+ right (Qlt_not_le (q + (1 # Pos.of_nat (S n))) (xn (S n)) q0)
+ | right q0 => left q0
+ end)).
+ 2: discriminate. clear qmaj.
+ destruct s as [n nmaj]. apply nmaj.
+ apply (Qplus_lt_l _ _ (xn (Pos.to_nat p) + (1#Pos.of_nat (S n)))) in pmaj.
+ ring_simplify in pmaj. apply Qlt_le_weak. rewrite Qplus_comm.
+ apply (Qlt_trans _ ((2 # p) + xn (Pos.to_nat p) + (1 # Pos.of_nat (S n)))).
+ 2: exact pmaj.
+ apply (Qplus_lt_l _ _ (-xn (Pos.to_nat p))).
+ apply (Qle_lt_trans _ _ _ (Qle_Qabs _)).
+ destruct (le_lt_dec (S n) (Pos.to_nat p)).
+ + specialize (xcau (Pos.of_nat (S n)) (S n) (Pos.to_nat p)).
+ apply (Qlt_trans _ (1# Pos.of_nat (S n))). apply xcau.
+ rewrite Nat2Pos.id. apply le_refl. discriminate.
+ rewrite Nat2Pos.id. exact l. discriminate.
+ apply (Qplus_lt_l _ _ (-(1#Pos.of_nat (S n)))).
+ ring_simplify. reflexivity.
+ + apply (Qlt_trans _ (1#p)). apply xcau.
+ apply le_S_n in l. apply le_S, l. apply le_refl.
+ ring_simplify. apply (Qlt_trans _ (2#p)).
+ unfold Qlt, Qnum, Qden.
+ apply Z.mul_lt_mono_pos_r. reflexivity. reflexivity.
+ apply (Qplus_lt_l _ _ (-(2#p))). ring_simplify. reflexivity.
+Qed.
diff --git a/theories/Reals/ConstructiveCauchyReals.v b/theories/Reals/ConstructiveCauchyReals.v
index 965d31d403..b83f8581d0 100644
--- a/theories/Reals/ConstructiveCauchyReals.v
+++ b/theories/Reals/ConstructiveCauchyReals.v
@@ -16,15 +16,7 @@ Require Import Logic.ConstructiveEpsilon.
Require CMorphisms.
(** The constructive Cauchy real numbers, ie the Cauchy sequences
- of rational numbers. This file is not supposed to be imported,
- except in Rdefinitions.v, Raxioms.v, Rcomplete_constr.v
- and ConstructiveRIneq.v.
-
- Constructive real numbers should be considered abstractly,
- forgetting the fact that they are implemented as rational sequences.
- All useful lemmas of this file are exposed in ConstructiveRIneq.v,
- under more abstract names, like Rlt_asym instead of CRealLt_asym.
-
+ of rational numbers.
Cauchy reals are Cauchy sequences of rational numbers,
equipped with explicit moduli of convergence and
@@ -705,6 +697,17 @@ Proof.
right. rewrite H0, H. exact c.
Qed.
+Add Parametric Morphism : CRealLtProp
+ with signature CRealEq ==> CRealEq ==> iff
+ as CRealLtProp_morph.
+Proof.
+ intros x y H x0 y0 H0. split.
+ - intro. apply CRealLtForget. apply CRealLtEpsilon in H1.
+ rewrite <- H, <- H0. exact H1.
+ - intro. apply CRealLtForget. apply CRealLtEpsilon in H1.
+ rewrite H, H0. exact H1.
+Qed.
+
Add Parametric Morphism : CRealLe
with signature CRealEq ==> CRealEq ==> iff
as CRealLe_morph.
@@ -772,6 +775,9 @@ Proof.
intro q. exists (fun n => q). apply ConstCauchy.
Defined.
+Definition inject_Z : Z -> CReal
+ := fun n => inject_Q (n # 1).
+
Notation "0" := (inject_Q 0) : CReal_scope.
Notation "1" := (inject_Q 1) : CReal_scope.
Notation "2" := (inject_Q 2) : CReal_scope.
@@ -1324,3 +1330,19 @@ Proof.
apply (Qlt_not_le _ _ maj). apply (Qle_trans _ 0).
apply (Qplus_le_l _ _ r). ring_simplify. exact H. discriminate.
Qed.
+
+Lemma inject_Z_plus : forall q r : Z,
+ inject_Z (q + r) == inject_Z q + inject_Z r.
+Proof.
+ intros. unfold inject_Z.
+ setoid_replace (q + r # 1)%Q with ((q#1) + (r#1))%Q.
+ apply inject_Q_plus. rewrite Qinv_plus_distr. reflexivity.
+Qed.
+
+Lemma opp_inject_Z : forall n : Z,
+ inject_Z (-n) == - inject_Z n.
+Proof.
+ intros. unfold inject_Z.
+ setoid_replace (-n # 1)%Q with (-(n#1))%Q.
+ rewrite opp_inject_Q. reflexivity. reflexivity.
+Qed.
diff --git a/theories/Reals/ConstructiveRIneq.v b/theories/Reals/ConstructiveRIneq.v
deleted file mode 100644
index e0f08d2fbe..0000000000
--- a/theories/Reals/ConstructiveRIneq.v
+++ /dev/null
@@ -1,2817 +0,0 @@
-(************************************************************************)
-(* * The Coq Proof Assistant / The Coq Development Team *)
-(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
-(* False.
-Definition Rge (x y : R) := CRlt CR x y -> False.
-Definition Rlt := CRlt CR.
-Definition RltProp := CRltProp CR.
-Definition Rgt (x y : R) := CRlt CR y x.
-Definition Rappart := orderAppart R (CRlt CR).
-
-Infix "==" := Req : R_scope_constr.
-Infix "#" := Rappart : R_scope_constr.
-Infix "<" := Rlt : R_scope_constr.
-Infix ">" := Rgt : R_scope_constr.
-Infix "<=" := Rle : R_scope_constr.
-Infix ">=" := Rge : R_scope_constr.
-
-Notation "x <= y <= z" := (x <= y /\ y <= z) : R_scope_constr.
-Notation "x <= y < z" := (prod (x <= y) (y < z)) : R_scope_constr.
-Notation "x < y < z" := (prod (x < y) (y < z)) : R_scope_constr.
-Notation "x < y <= z" := (prod (x < y) (y <= z)) : R_scope_constr.
-
-Lemma Rlt_epsilon : forall x y : R, RltProp x y -> x < y.
-Proof.
- exact (CRltEpsilon CR).
-Qed.
-
-Lemma Rlt_forget : forall x y : R, x < y -> RltProp x y.
-Proof.
- exact (CRltForget CR).
-Qed.
-
-Lemma Rle_refl : forall x : R, x <= x.
-Proof.
- intros. intro abs.
- destruct (CRltLinear CR), p.
- exact (f x x abs abs).
-Qed.
-Hint Immediate Rle_refl: rorders.
-
-Lemma Req_refl : forall x : R, x == x.
-Proof.
- intros. split; apply Rle_refl.
-Qed.
-
-Lemma Req_sym : forall x y : R, x == y -> y == x.
-Proof.
- intros. destruct H. split; intro abs; contradiction.
-Qed.
-
-Lemma Req_trans : forall x y z : R, x == y -> y == z -> x == z.
-Proof.
- intros. destruct H,H0. destruct (CRltLinear CR), p. split.
- - intro abs. destruct (s _ y _ abs); contradiction.
- - intro abs. destruct (s _ y _ abs); contradiction.
-Qed.
-
-Add Parametric Relation : R Req
- reflexivity proved by Req_refl
- symmetry proved by Req_sym
- transitivity proved by Req_trans
- as Req_rel.
-
-Instance Req_relT : CRelationClasses.Equivalence Req.
-Proof.
- split. exact Req_refl. exact Req_sym. exact Req_trans.
-Qed.
-
-Lemma linear_order_T : forall x y z : R,
- x < z -> (x < y) + (y < z).
-Proof.
- intros. destruct (CRltLinear CR). apply s. exact H.
-Qed.
-
-Instance Rlt_morph
- : CMorphisms.Proper
- (CMorphisms.respectful Req (CMorphisms.respectful Req CRelationClasses.iffT)) Rlt.
-Proof.
- intros x y H x0 y0 H0. destruct H, H0. split.
- - intro. destruct (linear_order_T x y x0). assumption.
- contradiction. destruct (linear_order_T y y0 x0).
- assumption. assumption. contradiction.
- - intro. destruct (linear_order_T y x y0). assumption.
- contradiction. destruct (linear_order_T x x0 y0).
- assumption. assumption. contradiction.
-Qed.
-
-Instance RltProp_morph
- : Morphisms.Proper
- (Morphisms.respectful Req (Morphisms.respectful Req iff)) RltProp.
-Proof.
- intros x y H x0 y0 H0. destruct H, H0. split.
- - intro. destruct (linear_order_T x y x0).
- apply Rlt_epsilon. assumption.
- contradiction. destruct (linear_order_T y y0 x0).
- assumption. apply Rlt_forget. assumption. contradiction.
- - intro. destruct (linear_order_T y x y0).
- apply Rlt_epsilon. assumption.
- contradiction. destruct (linear_order_T x x0 y0).
- assumption. apply Rlt_forget. assumption. contradiction.
-Qed.
-
-Instance Rgt_morph
- : CMorphisms.Proper
- (CMorphisms.respectful Req (CMorphisms.respectful Req CRelationClasses.iffT)) Rgt.
-Proof.
- intros x y H x0 y0 H0. unfold Rgt. apply Rlt_morph; assumption.
-Qed.
-
-Instance Rappart_morph
- : CMorphisms.Proper
- (CMorphisms.respectful Req (CMorphisms.respectful Req CRelationClasses.iffT)) Rappart.
-Proof.
- split.
- - intros. destruct H1. left. rewrite <- H0, <- H. exact c.
- right. rewrite <- H0, <- H. exact c.
- - intros. destruct H1. left. rewrite H0, H. exact c.
- right. rewrite H0, H. exact c.
-Qed.
-
-Add Parametric Morphism : Rle
- with signature Req ==> Req ==> iff
- as Rle_morph.
-Proof.
- intros. split.
- - intros H1 H2. unfold CRealLe in H1.
- rewrite <- H0 in H2. rewrite <- H in H2. contradiction.
- - intros H1 H2. unfold CRealLe in H1.
- rewrite H0 in H2. rewrite H in H2. contradiction.
-Qed.
-
-Add Parametric Morphism : Rge
- with signature Req ==> Req ==> iff
- as Rge_morph.
-Proof.
- intros. unfold Rge. apply Rle_morph; assumption.
-Qed.
-
-
-Definition Rplus := CRplus CR.
-Definition Rmult := CRmult CR.
-Definition Rinv := CRinv CR.
-Definition Ropp := CRopp CR.
-
-Add Parametric Morphism : Rplus
- with signature Req ==> Req ==> Req
- as Rplus_morph.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Instance Rplus_morph_T
- : CMorphisms.Proper
- (CMorphisms.respectful Req (CMorphisms.respectful Req Req)) Rplus.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Add Parametric Morphism : Rmult
- with signature Req ==> Req ==> Req
- as Rmult_morph.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Instance Rmult_morph_T
- : CMorphisms.Proper
- (CMorphisms.respectful Req (CMorphisms.respectful Req Req)) Rmult.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Add Parametric Morphism : Ropp
- with signature Req ==> Req
- as Ropp_morph.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Instance Ropp_morph_T
- : CMorphisms.Proper
- (CMorphisms.respectful Req Req) Ropp.
-Proof.
- apply CRisRingExt.
-Qed.
-
-Infix "+" := Rplus : R_scope_constr.
-Notation "- x" := (Ropp x) : R_scope_constr.
-Definition Rminus (r1 r2:R) : R := r1 + - r2.
-Infix "-" := Rminus : R_scope_constr.
-Infix "*" := Rmult : R_scope_constr.
-Notation "/ x" := (CRinv CR x) (at level 35, right associativity) : R_scope_constr.
-
-Notation "0" := (CRzero CR) : R_scope_constr.
-Notation "1" := (CRone CR) : R_scope_constr.
-
-Add Parametric Morphism : Rminus
- with signature Req ==> Req ==> Req
- as Rminus_morph.
-Proof.
- intros. unfold Rminus, CRminus. rewrite H,H0. reflexivity.
-Qed.
-
-
-(* Help Add Ring to find the correct equality *)
-Lemma RisRing : ring_theory 0 1
- Rplus Rmult
- Rminus Ropp
- Req.
-Proof.
- exact (CRisRing CR).
-Qed.
-
-Add Ring CRealRing : RisRing.
-
-Lemma Rplus_comm : forall x y:R, x + y == y + x.
-Proof. intros. ring. Qed.
-
-Lemma Rplus_assoc : forall x y z:R, (x + y) + z == x + (y + z).
-Proof. intros. ring. Qed.
-
-Lemma Rplus_opp_r : forall x:R, x + -x == 0.
-Proof. intros. ring. Qed.
-
-Lemma Rplus_0_l : forall x:R, 0 + x == x.
-Proof. intros. ring. Qed.
-
-Lemma Rmult_0_l : forall x:R, 0 * x == 0.
-Proof. intros. ring. Qed.
-
-Lemma Rmult_1_l : forall x:R, 1 * x == x.
-Proof. intros. ring. Qed.
-
-Lemma Rmult_comm : forall x y:R, x * y == y * x.
-Proof. intros. ring. Qed.
-
-Lemma Rmult_assoc : forall x y z:R, (x * y) * z == x * (y * z).
-Proof. intros. ring. Qed.
-
-Definition Rinv_l := CRinv_l CR.
-
-Lemma Rmult_plus_distr_l : forall r1 r2 r3 : R,
- r1 * (r2 + r3) == (r1 * r2) + (r1 * r3).
-Proof. intros. ring. Qed.
-
-Definition Rlt_0_1 := CRzero_lt_one CR.
-
-Lemma Rlt_asym : forall x y :R, x < y -> y < x -> False.
-Proof.
- intros. destruct (CRltLinear CR), p.
- apply (f x y); assumption.
-Qed.
-
-Lemma Rlt_trans : forall x y z : R, x < y -> y < z -> x < z.
-Proof.
- intros. destruct (CRltLinear CR), p.
- apply (c x y); assumption.
-Qed.
-
-Lemma Rplus_lt_compat_l : forall x y z : R,
- y < z -> x + y < x + z.
-Proof.
- intros. apply CRplus_lt_compat_l. exact H.
-Qed.
-
-Lemma Ropp_mult_distr_l
- : forall r1 r2 : R, -(r1 * r2) == (- r1) * r2.
-Proof.
- intros. ring.
-Qed.
-
-Lemma Rplus_lt_reg_l : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
-Proof.
- intros. apply CRplus_lt_reg_l in H. exact H.
-Qed.
-
-Lemma Rmult_lt_compat_l : forall x y z : R,
- 0 < x -> y < z -> x * y < x * z.
-Proof.
- intros. apply (CRplus_lt_reg_l CR (- (x * y))).
- rewrite Rplus_comm. pose proof Rplus_opp_r.
- rewrite H1.
- rewrite Rmult_comm, Ropp_mult_distr_l, Rmult_comm.
- rewrite <- Rmult_plus_distr_l.
- apply CRmult_lt_0_compat. exact H.
- apply (Rplus_lt_reg_l y).
- rewrite Rplus_comm, Rplus_0_l.
- rewrite <- Rplus_assoc, H1, Rplus_0_l. exact H0.
-Qed.
-
-Hint Resolve Rplus_comm Rplus_assoc Rplus_opp_r Rplus_0_l
- Rmult_comm Rmult_assoc Rinv_l Rmult_1_l Rmult_plus_distr_l
- Rlt_0_1 Rlt_asym Rlt_trans Rplus_lt_compat_l Rmult_lt_compat_l
- Rmult_0_l : creal.
-
-Fixpoint INR (n:nat) : R :=
- match n with
- | O => 0
- | S O => 1
- | S n => INR n + 1
- end.
-Arguments INR n%nat.
-
-(* compact representation for 2*p *)
-Fixpoint IPR_2 (p:positive) : R :=
- match p with
- | xH => 1 + 1
- | xO p => (1 + 1) * IPR_2 p
- | xI p => (1 + 1) * (1 + IPR_2 p)
- end.
-
-Definition IPR (p:positive) : R :=
- match p with
- | xH => 1
- | xO p => IPR_2 p
- | xI p => 1 + IPR_2 p
- end.
-Arguments IPR p%positive : simpl never.
-
-(**********)
-Definition IZR (z:Z) : R :=
- match z with
- | Z0 => 0
- | Zpos n => IPR n
- | Zneg n => - IPR n
- end.
-Arguments IZR z%Z : simpl never.
-
-Notation "2" := (IZR 2) : R_scope_constr.
-
-
-(*********************************************************)
-(** ** Relation between orders and equality *)
-(*********************************************************)
-
-Lemma Rge_refl : forall r, r <= r.
-Proof. exact Rle_refl. Qed.
-Hint Immediate Rge_refl: rorders.
-
-(** Irreflexivity of the strict order *)
-
-Lemma Rlt_irrefl : forall r, r < r -> False.
-Proof.
- intros r H; eapply Rlt_asym; eauto.
-Qed.
-Hint Resolve Rlt_irrefl: creal.
-
-Lemma Rgt_irrefl : forall r, r > r -> False.
-Proof. exact Rlt_irrefl. Qed.
-
-Lemma Rlt_not_eq : forall r1 r2, r1 < r2 -> r1 <> r2.
-Proof.
- intros. intro abs. subst r2. exact (Rlt_irrefl r1 H).
-Qed.
-
-Lemma Rgt_not_eq : forall r1 r2, r1 > r2 -> r1 <> r2.
-Proof.
- intros; apply not_eq_sym; apply Rlt_not_eq; auto with creal.
-Qed.
-
-(**********)
-Lemma Rlt_dichotomy_converse : forall r1 r2, ((r1 < r2) + (r1 > r2)) -> r1 <> r2.
-Proof.
- intros. destruct H.
- - intro abs. subst r2. exact (Rlt_irrefl r1 r).
- - intro abs. subst r2. exact (Rlt_irrefl r1 r).
-Qed.
-Hint Resolve Rlt_dichotomy_converse: creal.
-
-(** Reasoning by case on equality and order *)
-
-
-(*********************************************************)
-(** ** Relating [<], [>], [<=] and [>=] *)
-(*********************************************************)
-
-(*********************************************************)
-(** ** Order *)
-(*********************************************************)
-
-(** *** Relating strict and large orders *)
-
-Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2.
-Proof.
- intros. intro abs. apply (Rlt_asym r1 r2); assumption.
-Qed.
-Hint Resolve Rlt_le: creal.
-
-Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2.
-Proof.
- intros. intro abs. apply (Rlt_asym r1 r2); assumption.
-Qed.
-
-(**********)
-Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1.
-Proof.
- intros. intros abs. contradiction.
-Qed.
-Hint Immediate Rle_ge: creal.
-Hint Resolve Rle_ge: rorders.
-
-Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1.
-Proof.
- intros. intro abs. contradiction.
-Qed.
-Hint Resolve Rge_le: creal.
-Hint Immediate Rge_le: rorders.
-
-(**********)
-Lemma Rlt_gt : forall r1 r2, r1 < r2 -> r2 > r1.
-Proof.
- trivial.
-Qed.
-Hint Resolve Rlt_gt: rorders.
-
-Lemma Rgt_lt : forall r1 r2, r1 > r2 -> r2 < r1.
-Proof.
- trivial.
-Qed.
-Hint Immediate Rgt_lt: rorders.
-
-(**********)
-
-Lemma Rnot_lt_le : forall r1 r2, (r1 < r2 -> False) -> r2 <= r1.
-Proof.
- intros. exact H.
-Qed.
-
-Lemma Rnot_gt_le : forall r1 r2, (r1 > r2 -> False) -> r1 <= r2.
-Proof.
- intros. intro abs. contradiction.
-Qed.
-
-Lemma Rnot_gt_ge : forall r1 r2, (r1 > r2 -> False) -> r2 >= r1.
-Proof.
- intros. intro abs. contradiction.
-Qed.
-
-Lemma Rnot_lt_ge : forall r1 r2, (r1 < r2 -> False) -> r1 >= r2.
-Proof.
- intros. intro abs. contradiction.
-Qed.
-
-(**********)
-Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2.
-Proof.
- generalize Rlt_asym Rlt_dichotomy_converse; unfold CRealLe.
- unfold not; intuition eauto 3.
-Qed.
-Hint Immediate Rlt_not_le: creal.
-
-Lemma Rgt_not_le : forall r1 r2, r1 > r2 -> ~ r1 <= r2.
-Proof. exact Rlt_not_le. Qed.
-
-Lemma Rlt_not_ge : forall r1 r2, r1 < r2 -> ~ r1 >= r2.
-Proof. red; intros; eapply Rlt_not_le; eauto with creal. Qed.
-Hint Immediate Rlt_not_ge: creal.
-
-Lemma Rgt_not_ge : forall r1 r2, r2 > r1 -> ~ r1 >= r2.
-Proof. exact Rlt_not_ge. Qed.
-
-Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> r1 < r2 -> False.
-Proof.
- intros r1 r2. generalize (Rlt_asym r1 r2) (Rlt_dichotomy_converse r1 r2).
- unfold CRealLe; intuition.
-Qed.
-
-Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> r1 < r2 -> False.
-Proof. intros; apply (Rle_not_lt r1 r2); auto with creal. Qed.
-
-Lemma Rle_not_gt : forall r1 r2, r1 <= r2 -> r1 > r2 -> False.
-Proof. do 2 intro; apply Rle_not_lt. Qed.
-
-Lemma Rge_not_gt : forall r1 r2, r2 >= r1 -> r1 > r2 -> False.
-Proof. do 2 intro; apply Rge_not_lt. Qed.
-
-(**********)
-Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2.
-Proof.
- intros. intro abs. subst r2. exact (Rlt_irrefl r1 abs).
-Qed.
-Hint Immediate Req_le: creal.
-
-Lemma Req_ge : forall r1 r2, r1 = r2 -> r1 >= r2.
-Proof.
- intros. intro abs. subst r2. exact (Rlt_irrefl r1 abs).
-Qed.
-Hint Immediate Req_ge: creal.
-
-Lemma Req_le_sym : forall r1 r2, r2 = r1 -> r1 <= r2.
-Proof.
- intros. intro abs. subst r2. exact (Rlt_irrefl r1 abs).
-Qed.
-Hint Immediate Req_le_sym: creal.
-
-Lemma Req_ge_sym : forall r1 r2, r2 = r1 -> r1 >= r2.
-Proof.
- intros. intro abs. subst r2. exact (Rlt_irrefl r1 abs).
-Qed.
-Hint Immediate Req_ge_sym: creal.
-
-(** *** Asymmetry *)
-
-(** Remark: [Rlt_asym] is an axiom *)
-
-Lemma Rgt_asym : forall r1 r2, r1 > r2 -> r2 > r1 -> False.
-Proof. do 2 intro; apply Rlt_asym. Qed.
-
-
-(** *** Compatibility with equality *)
-
-Lemma Rlt_eq_compat :
- forall r1 r2 r3 r4, r1 = r2 -> r2 < r4 -> r4 = r3 -> r1 < r3.
-Proof.
- intros x x' y y'; intros; replace x with x'; replace y with y'; assumption.
-Qed.
-
-Lemma Rgt_eq_compat :
- forall r1 r2 r3 r4, r1 = r2 -> r2 > r4 -> r4 = r3 -> r1 > r3.
-Proof. intros; red; apply Rlt_eq_compat with (r2:=r4) (r4:=r2); auto. Qed.
-
-(** *** Transitivity *)
-
-Lemma Rle_trans : forall r1 r2 r3, r1 <= r2 -> r2 <= r3 -> r1 <= r3.
-Proof.
- intros. intro abs.
- destruct (linear_order_T r3 r2 r1 abs); contradiction.
-Qed.
-
-Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3.
-Proof.
- intros. apply (Rle_trans _ r2); assumption.
-Qed.
-
-Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3.
-Proof.
- intros. apply (Rlt_trans _ r2); assumption.
-Qed.
-
-(**********)
-Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3.
-Proof.
- intros.
- destruct (linear_order_T r2 r1 r3 H0). contradiction. apply r.
-Qed.
-
-Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3.
-Proof.
- intros.
- destruct (linear_order_T r1 r3 r2 H). apply r. contradiction.
-Qed.
-
-Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3.
-Proof.
- intros. apply (Rlt_le_trans _ r2); assumption.
-Qed.
-
-Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3.
-Proof.
- intros. apply (Rle_lt_trans _ r2); assumption.
-Qed.
-
-
-(*********************************************************)
-(** ** Addition *)
-(*********************************************************)
-
-(** Remark: [Rplus_0_l] is an axiom *)
-
-Lemma Rplus_0_r : forall r, r + 0 == r.
-Proof.
- intros. rewrite Rplus_comm. rewrite Rplus_0_l. reflexivity.
-Qed.
-Hint Resolve Rplus_0_r: creal.
-
-Lemma Rplus_ne : forall r, r + 0 == r /\ 0 + r == r.
-Proof.
- split. apply Rplus_0_r. apply Rplus_0_l.
-Qed.
-Hint Resolve Rplus_ne: creal.
-
-(**********)
-
-(** Remark: [Rplus_opp_r] is an axiom *)
-
-Lemma Rplus_opp_l : forall r, - r + r == 0.
-Proof.
- intros. rewrite Rplus_comm. apply Rplus_opp_r.
-Qed.
-Hint Resolve Rplus_opp_l: creal.
-
-(**********)
-Lemma Rplus_opp_r_uniq : forall r1 r2, r1 + r2 == 0 -> r2 == - r1.
-Proof.
- intros x y H. rewrite <- (Rplus_0_l y).
- rewrite <- (Rplus_opp_l x). rewrite Rplus_assoc.
- rewrite H. rewrite Rplus_0_r. reflexivity.
-Qed.
-
-Lemma Rplus_eq_compat_l : forall r r1 r2, r1 == r2 -> r + r1 == r + r2.
-Proof.
- intros. rewrite H. reflexivity.
-Qed.
-
-Lemma Rplus_eq_compat_r : forall r r1 r2, r1 == r2 -> r1 + r == r2 + r.
-Proof.
- intros. rewrite H. reflexivity.
-Qed.
-
-
-(**********)
-Lemma Rplus_eq_reg_l : forall r r1 r2, r + r1 == r + r2 -> r1 == r2.
-Proof.
- intros; transitivity (- r + r + r1).
- rewrite Rplus_opp_l. rewrite Rplus_0_l. reflexivity.
- transitivity (- r + r + r2).
- repeat rewrite Rplus_assoc; rewrite <- H; reflexivity.
- rewrite Rplus_opp_l. rewrite Rplus_0_l. reflexivity.
-Qed.
-Hint Resolve Rplus_eq_reg_l: creal.
-
-Lemma Rplus_eq_reg_r : forall r r1 r2, r1 + r == r2 + r -> r1 == r2.
-Proof.
- intros r r1 r2 H.
- apply Rplus_eq_reg_l with r.
- now rewrite 2!(Rplus_comm r).
-Qed.
-
-(**********)
-Lemma Rplus_0_r_uniq : forall r r1, r + r1 == r -> r1 == 0.
-Proof.
- intros. apply (Rplus_eq_reg_l r). rewrite Rplus_0_r. exact H.
-Qed.
-
-
-(*********************************************************)
-(** ** Multiplication *)
-(*********************************************************)
-
-(**********)
-Lemma Rinv_r : forall r (rnz : r # 0),
- r # 0 -> r * ((/ r) rnz) == 1.
-Proof.
- intros. rewrite Rmult_comm. rewrite Rinv_l.
- reflexivity.
-Qed.
-Hint Resolve Rinv_r: creal.
-
-Lemma Rinv_l_sym : forall r (rnz: r # 0), 1 == (/ r) rnz * r.
-Proof.
- intros. symmetry. apply Rinv_l.
-Qed.
-Hint Resolve Rinv_l_sym: creal.
-
-Lemma Rinv_r_sym : forall r (rnz : r # 0), 1 == r * (/ r) rnz.
-Proof.
- intros. symmetry. apply Rinv_r. apply rnz.
-Qed.
-Hint Resolve Rinv_r_sym: creal.
-
-(**********)
-Lemma Rmult_0_r : forall r, r * 0 == 0.
-Proof.
- intro; ring.
-Qed.
-Hint Resolve Rmult_0_r: creal.
-
-(**********)
-Lemma Rmult_ne : forall r, r * 1 == r /\ 1 * r == r.
-Proof.
- intro; split; ring.
-Qed.
-Hint Resolve Rmult_ne: creal.
-
-(**********)
-Lemma Rmult_1_r : forall r, r * 1 == r.
-Proof.
- intro; ring.
-Qed.
-Hint Resolve Rmult_1_r: creal.
-
-(**********)
-Lemma Rmult_eq_compat_l : forall r r1 r2, r1 == r2 -> r * r1 == r * r2.
-Proof.
- intros. rewrite H. reflexivity.
-Qed.
-
-Lemma Rmult_eq_compat_r : forall r r1 r2, r1 == r2 -> r1 * r == r2 * r.
-Proof.
- intros. rewrite H. reflexivity.
-Qed.
-
-(**********)
-Lemma Rmult_eq_reg_l : forall r r1 r2, r * r1 == r * r2 -> r # 0 -> r1 == r2.
-Proof.
- intros. transitivity ((/ r) H0 * r * r1).
- rewrite Rinv_l. ring.
- transitivity ((/ r) H0 * r * r2).
- repeat rewrite Rmult_assoc; rewrite H; reflexivity.
- rewrite Rinv_l. ring.
-Qed.
-
-Lemma Rmult_eq_reg_r : forall r r1 r2, r1 * r == r2 * r -> r # 0 -> r1 == r2.
-Proof.
- intros.
- apply Rmult_eq_reg_l with (2 := H0).
- now rewrite 2!(Rmult_comm r).
-Qed.
-
-(**********)
-Lemma Rmult_eq_0_compat : forall r1 r2, r1 == 0 \/ r2 == 0 -> r1 * r2 == 0.
-Proof.
- intros r1 r2 [H| H]; rewrite H; auto with creal.
-Qed.
-
-Hint Resolve Rmult_eq_0_compat: creal.
-
-(**********)
-Lemma Rmult_eq_0_compat_r : forall r1 r2, r1 == 0 -> r1 * r2 == 0.
-Proof.
- auto with creal.
-Qed.
-
-(**********)
-Lemma Rmult_eq_0_compat_l : forall r1 r2, r2 == 0 -> r1 * r2 == 0.
-Proof.
- auto with creal.
-Qed.
-
-(**********)
-Lemma Rmult_integral_contrapositive :
- forall r1 r2, (prod (r1 # 0) (r2 # 0)) -> (r1 * r2) # 0.
-Proof.
- assert (forall r, 0 > r -> 0 < - r).
- { intros. rewrite <- (Rplus_opp_l r), <- (Rplus_0_r (-r)), Rplus_assoc.
- apply Rplus_lt_compat_l. rewrite Rplus_0_l. apply H. }
- intros. destruct H0, r, r0.
- - right. setoid_replace (r1*r2) with (-r1 * -r2). 2: ring.
- rewrite <- (Rmult_0_r (-r1)). apply Rmult_lt_compat_l; apply H; assumption.
- - left. rewrite <- (Rmult_0_r r2).
- rewrite Rmult_comm. apply (Rmult_lt_compat_l). apply c0. apply c.
- - left. rewrite <- (Rmult_0_r r1). apply (Rmult_lt_compat_l). apply c. apply c0.
- - right. rewrite <- (Rmult_0_r r1). apply Rmult_lt_compat_l; assumption.
-Qed.
-Hint Resolve Rmult_integral_contrapositive: creal.
-
-Lemma Rmult_integral_contrapositive_currified :
- forall r1 r2, r1 # 0 -> r2 # 0 -> (r1 * r2) # 0.
-Proof.
- intros. apply Rmult_integral_contrapositive.
- split; assumption.
-Qed.
-
-(**********)
-Lemma Rmult_plus_distr_r :
- forall r1 r2 r3, (r1 + r2) * r3 == r1 * r3 + r2 * r3.
-Proof.
- intros; ring.
-Qed.
-
-(*********************************************************)
-(** ** Square function *)
-(*********************************************************)
-
-(***********)
-Definition Rsqr (r : R) := r * r.
-
-Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope_constr.
-
-(***********)
-Lemma Rsqr_0 : Rsqr 0 == 0.
- unfold Rsqr; auto with creal.
-Qed.
-
-(*********************************************************)
-(** ** Opposite *)
-(*********************************************************)
-
-(**********)
-Lemma Ropp_eq_compat : forall r1 r2, r1 == r2 -> - r1 == - r2.
-Proof.
- intros. rewrite H. reflexivity.
-Qed.
-Hint Resolve Ropp_eq_compat: creal.
-
-(**********)
-Lemma Ropp_0 : -0 == 0.
-Proof.
- ring.
-Qed.
-Hint Resolve Ropp_0: creal.
-
-(**********)
-Lemma Ropp_eq_0_compat : forall r, r == 0 -> - r == 0.
-Proof.
- intros; rewrite H; auto with creal.
-Qed.
-Hint Resolve Ropp_eq_0_compat: creal.
-
-(**********)
-Lemma Ropp_involutive : forall r, - - r == r.
-Proof.
- intro; ring.
-Qed.
-Hint Resolve Ropp_involutive: creal.
-
-(**********)
-Lemma Ropp_plus_distr : forall r1 r2, - (r1 + r2) == - r1 + - r2.
-Proof.
- intros; ring.
-Qed.
-Hint Resolve Ropp_plus_distr: creal.
-
-(*********************************************************)
-(** ** Opposite and multiplication *)
-(*********************************************************)
-
-Lemma Ropp_mult_distr_l_reverse : forall r1 r2, - r1 * r2 == - (r1 * r2).
-Proof.
- intros; ring.
-Qed.
-Hint Resolve Ropp_mult_distr_l_reverse: creal.
-
-(**********)
-Lemma Rmult_opp_opp : forall r1 r2, - r1 * - r2 == r1 * r2.
-Proof.
- intros; ring.
-Qed.
-Hint Resolve Rmult_opp_opp: creal.
-
-Lemma Ropp_mult_distr_r : forall r1 r2, - (r1 * r2) == r1 * - r2.
-Proof.
- intros; ring.
-Qed.
-
-Lemma Ropp_mult_distr_r_reverse : forall r1 r2, r1 * - r2 == - (r1 * r2).
-Proof.
- intros; ring.
-Qed.
-
-(*********************************************************)
-(** ** Subtraction *)
-(*********************************************************)
-
-Lemma Rminus_0_r : forall r, r - 0 == r.
-Proof.
- intro r. unfold Rminus. ring.
-Qed.
-Hint Resolve Rminus_0_r: creal.
-
-Lemma Rminus_0_l : forall r, 0 - r == - r.
-Proof.
- intro r. unfold Rminus. ring.
-Qed.
-Hint Resolve Rminus_0_l: creal.
-
-(**********)
-Lemma Ropp_minus_distr : forall r1 r2, - (r1 - r2) == r2 - r1.
-Proof.
- intros; ring.
-Qed.
-Hint Resolve Ropp_minus_distr: creal.
-
-Lemma Ropp_minus_distr' : forall r1 r2, - (r2 - r1) == r1 - r2.
-Proof.
- intros; ring.
-Qed.
-
-(**********)
-Lemma Rminus_diag_eq : forall r1 r2, r1 == r2 -> r1 - r2 == 0.
-Proof.
- intros; rewrite H; unfold Rminus; ring.
-Qed.
-Hint Resolve Rminus_diag_eq: creal.
-
-(**********)
-Lemma Rminus_diag_uniq : forall r1 r2, r1 - r2 == 0 -> r1 == r2.
-Proof.
- intros r1 r2. unfold Rminus,CRminus; rewrite Rplus_comm; intro.
- rewrite <- (Ropp_involutive r2); apply (Rplus_opp_r_uniq (- r2) r1 H).
-Qed.
-Hint Immediate Rminus_diag_uniq: creal.
-
-Lemma Rminus_diag_uniq_sym : forall r1 r2, r2 - r1 == 0 -> r1 == r2.
-Proof.
- intros; generalize (Rminus_diag_uniq r2 r1 H); clear H;
- intro H; rewrite H; reflexivity.
-Qed.
-Hint Immediate Rminus_diag_uniq_sym: creal.
-
-Lemma Rplus_minus : forall r1 r2, r1 + (r2 - r1) == r2.
-Proof.
- intros; ring.
-Qed.
-Hint Resolve Rplus_minus: creal.
-
-(**********)
-Lemma Rmult_minus_distr_l :
- forall r1 r2 r3, r1 * (r2 - r3) == r1 * r2 - r1 * r3.
-Proof.
- intros; ring.
-Qed.
-
-
-(*********************************************************)
-(** ** Order and addition *)
-(*********************************************************)
-
-(** *** Compatibility *)
-
-(** Remark: [Rplus_lt_compat_l] is an axiom *)
-
-Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2.
-Proof.
- intros. apply Rplus_lt_compat_l. apply H.
-Qed.
-Hint Resolve Rplus_gt_compat_l: creal.
-
-(**********)
-Lemma Rplus_lt_compat_r : forall r r1 r2, r1 < r2 -> r1 + r < r2 + r.
-Proof.
- intros.
- rewrite (Rplus_comm r1 r); rewrite (Rplus_comm r2 r).
- apply Rplus_lt_compat_l. exact H.
-Qed.
-Hint Resolve Rplus_lt_compat_r: creal.
-
-Lemma Rplus_gt_compat_r : forall r r1 r2, r1 > r2 -> r1 + r > r2 + r.
-Proof. do 3 intro; apply Rplus_lt_compat_r. Qed.
-
-(**********)
-
-Lemma Rplus_lt_reg_r : forall r r1 r2, r1 + r < r2 + r -> r1 < r2.
-Proof.
- intros.
- apply (Rplus_lt_reg_l r).
- now rewrite 2!(Rplus_comm r).
-Qed.
-
-Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2.
-Proof.
- intros. intro abs. apply Rplus_lt_reg_l in abs. contradiction.
-Qed.
-
-Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2.
-Proof.
- intros. apply Rplus_le_compat_l. apply H.
-Qed.
-Hint Resolve Rplus_ge_compat_l: creal.
-
-(**********)
-Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r.
-Proof.
- intros. intro abs. apply Rplus_lt_reg_r in abs. contradiction.
-Qed.
-
-Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: creal.
-
-Lemma Rplus_ge_compat_r : forall r r1 r2, r1 >= r2 -> r1 + r >= r2 + r.
-Proof.
- intros. apply Rplus_le_compat_r. apply H.
-Qed.
-
-(*********)
-Lemma Rplus_lt_compat :
- forall r1 r2 r3 r4, r1 < r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
-Proof.
- intros; apply Rlt_trans with (r2 + r3); auto with creal.
-Qed.
-Hint Immediate Rplus_lt_compat: creal.
-
-Lemma Rplus_le_compat :
- forall r1 r2 r3 r4, r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4.
-Proof.
- intros; apply Rle_trans with (r2 + r3); auto with creal.
-Qed.
-Hint Immediate Rplus_le_compat: creal.
-
-Lemma Rplus_gt_compat :
- forall r1 r2 r3 r4, r1 > r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
-Proof.
- intros. apply Rplus_lt_compat; assumption.
-Qed.
-
-Lemma Rplus_ge_compat :
- forall r1 r2 r3 r4, r1 >= r2 -> r3 >= r4 -> r1 + r3 >= r2 + r4.
-Proof.
- intros. apply Rplus_le_compat; assumption.
-Qed.
-
-(*********)
-Lemma Rplus_lt_le_compat :
- forall r1 r2 r3 r4, r1 < r2 -> r3 <= r4 -> r1 + r3 < r2 + r4.
-Proof.
- intros; apply Rlt_le_trans with (r2 + r3); auto with creal.
-Qed.
-
-Lemma Rplus_le_lt_compat :
- forall r1 r2 r3 r4, r1 <= r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
-Proof.
- intros; apply Rle_lt_trans with (r2 + r3); auto with creal.
-Qed.
-
-Hint Immediate Rplus_lt_le_compat Rplus_le_lt_compat: creal.
-
-Lemma Rplus_gt_ge_compat :
- forall r1 r2 r3 r4, r1 > r2 -> r3 >= r4 -> r1 + r3 > r2 + r4.
-Proof.
- intros. apply Rplus_lt_le_compat; assumption.
-Qed.
-
-Lemma Rplus_ge_gt_compat :
- forall r1 r2 r3 r4, r1 >= r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
-Proof.
- intros. apply Rplus_le_lt_compat; assumption.
-Qed.
-
-(**********)
-Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2.
-Proof.
- intros. apply (Rlt_trans _ (r1+0)). rewrite Rplus_0_r. exact H.
- apply Rplus_lt_compat_l. exact H0.
-Qed.
-
-Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2.
-Proof.
- intros. apply (Rle_lt_trans _ (r1+0)). rewrite Rplus_0_r. exact H.
- apply Rplus_lt_compat_l. exact H0.
-Qed.
-
-Lemma Rplus_lt_le_0_compat : forall r1 r2, 0 < r1 -> 0 <= r2 -> 0 < r1 + r2.
-Proof.
- intros x y; intros; rewrite <- Rplus_comm; apply Rplus_le_lt_0_compat;
- assumption.
-Qed.
-
-Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2.
-Proof.
- intros. apply (Rle_trans _ (r1+0)). rewrite Rplus_0_r. exact H.
- apply Rplus_le_compat_l. exact H0.
-Qed.
-
-(**********)
-Lemma sum_inequa_Rle_lt :
- forall a x b c y d,
- a <= x -> x < b -> c < y -> y <= d -> a + c < x + y < b + d.
-Proof.
- intros; split.
- apply Rlt_le_trans with (a + y); auto with creal.
- apply Rlt_le_trans with (b + y); auto with creal.
-Qed.
-
-(** *** Cancellation *)
-
-Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
-Proof.
- intros. intro abs. apply (Rplus_lt_compat_l r) in abs. contradiction.
-Qed.
-
-Lemma Rplus_le_reg_r : forall r r1 r2, r1 + r <= r2 + r -> r1 <= r2.
-Proof.
- intros.
- apply (Rplus_le_reg_l r).
- now rewrite 2!(Rplus_comm r).
-Qed.
-
-Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2.
-Proof.
- unfold CRealGt; intros; apply (Rplus_lt_reg_l r r2 r1 H).
-Qed.
-
-Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2.
-Proof.
- intros; apply Rle_ge; apply Rplus_le_reg_l with r; auto with creal.
-Qed.
-
-(**********)
-Lemma Rplus_le_reg_pos_r :
- forall r1 r2 r3, 0 <= r2 -> r1 + r2 <= r3 -> r1 <= r3.
-Proof.
- intros. apply (Rle_trans _ (r1+r2)). 2: exact H0.
- rewrite <- (Rplus_0_r r1), Rplus_assoc.
- apply Rplus_le_compat_l. rewrite Rplus_0_l. exact H.
-Qed.
-
-Lemma Rplus_lt_reg_pos_r : forall r1 r2 r3, 0 <= r2 -> r1 + r2 < r3 -> r1 < r3.
-Proof.
- intros. apply (Rle_lt_trans _ (r1+r2)). 2: exact H0.
- rewrite <- (Rplus_0_r r1), Rplus_assoc.
- apply Rplus_le_compat_l. rewrite Rplus_0_l. exact H.
-Qed.
-
-Lemma Rplus_ge_reg_neg_r :
- forall r1 r2 r3, 0 >= r2 -> r1 + r2 >= r3 -> r1 >= r3.
-Proof.
- intros. apply (Rge_trans _ (r1+r2)). 2: exact H0.
- apply Rle_ge. rewrite <- (Rplus_0_r r1), Rplus_assoc.
- apply Rplus_le_compat_l. rewrite Rplus_0_l. exact H.
-Qed.
-
-Lemma Rplus_gt_reg_neg_r : forall r1 r2 r3, 0 >= r2 -> r1 + r2 > r3 -> r1 > r3.
-Proof.
- intros. apply (Rlt_le_trans _ (r1+r2)). exact H0.
- rewrite <- (Rplus_0_r r1), Rplus_assoc.
- apply Rplus_le_compat_l. rewrite Rplus_0_l. exact H.
-Qed.
-
-(***********)
-Lemma Rplus_eq_0_l :
- forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 == 0 -> r1 == 0.
-Proof.
- intros. split.
- - intro abs. rewrite <- (Rplus_opp_r r1) in H1.
- apply Rplus_eq_reg_l in H1. rewrite H1 in H0. clear H1.
- apply (Rplus_le_compat_l r1) in H0.
- rewrite Rplus_opp_r in H0. rewrite Rplus_0_r in H0.
- contradiction.
- - intro abs. clear H. rewrite <- (Rplus_opp_r r1) in H1.
- apply Rplus_eq_reg_l in H1. rewrite H1 in H0. clear H1.
- apply (Rplus_le_compat_l r1) in H0.
- rewrite Rplus_opp_r in H0. rewrite Rplus_0_r in H0.
- contradiction.
-Qed.
-
-Lemma Rplus_eq_R0 :
- forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 == 0 -> r1 == 0 /\ r2 == 0.
-Proof.
- intros a b; split.
- apply Rplus_eq_0_l with b; auto with creal.
- apply Rplus_eq_0_l with a; auto with creal.
- rewrite Rplus_comm; auto with creal.
-Qed.
-
-
-(*********************************************************)
-(** ** Order and opposite *)
-(*********************************************************)
-
-(** *** Contravariant compatibility *)
-
-Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
-Proof.
- unfold CRealGt; intros.
- apply (Rplus_lt_reg_l (r2 + r1)).
- setoid_replace (r2 + r1 + - r1) with r2 by ring.
- setoid_replace (r2 + r1 + - r2) with r1 by ring.
- exact H.
-Qed.
-Hint Resolve Ropp_gt_lt_contravar : creal.
-
-Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2.
-Proof.
- intros. apply Ropp_gt_lt_contravar. exact H.
-Qed.
-Hint Resolve Ropp_lt_gt_contravar: creal.
-
-(**********)
-Lemma Ropp_lt_contravar : forall r1 r2, r2 < r1 -> - r1 < - r2.
-Proof.
- auto with creal.
-Qed.
-Hint Resolve Ropp_lt_contravar: creal.
-
-Lemma Ropp_gt_contravar : forall r1 r2, r2 > r1 -> - r1 > - r2.
-Proof. auto with creal. Qed.
-
-(**********)
-
-Lemma Ropp_lt_cancel : forall r1 r2, - r2 < - r1 -> r1 < r2.
-Proof.
- intros x y H'.
- rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
- auto with creal.
-Qed.
-Hint Immediate Ropp_lt_cancel: creal.
-
-Lemma Ropp_gt_cancel : forall r1 r2, - r2 > - r1 -> r1 > r2.
-Proof.
- intros. apply Ropp_lt_cancel. apply H.
-Qed.
-
-Lemma Ropp_le_ge_contravar : forall r1 r2, r1 <= r2 -> - r1 >= - r2.
-Proof.
- intros. intro abs. apply Ropp_lt_cancel in abs. contradiction.
-Qed.
-Hint Resolve Ropp_le_ge_contravar: creal.
-
-Lemma Ropp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2.
-Proof.
- intros. intro abs. apply Ropp_lt_cancel in abs. contradiction.
-Qed.
-Hint Resolve Ropp_ge_le_contravar: creal.
-
-(**********)
-Lemma Ropp_le_contravar : forall r1 r2, r2 <= r1 -> - r1 <= - r2.
-Proof.
- intros. intro abs. apply Ropp_lt_cancel in abs. contradiction.
-Qed.
-Hint Resolve Ropp_le_contravar: creal.
-
-Lemma Ropp_ge_contravar : forall r1 r2, r2 >= r1 -> - r1 >= - r2.
-Proof.
- intros. apply Ropp_le_contravar. apply H.
-Qed.
-
-(**********)
-Lemma Ropp_0_lt_gt_contravar : forall r, 0 < r -> 0 > - r.
-Proof.
- intros; setoid_replace 0 with (-0); auto with creal. ring.
-Qed.
-Hint Resolve Ropp_0_lt_gt_contravar: creal.
-
-Lemma Ropp_0_gt_lt_contravar : forall r, 0 > r -> 0 < - r.
-Proof.
- intros; setoid_replace 0 with (-0); auto with creal. ring.
-Qed.
-Hint Resolve Ropp_0_gt_lt_contravar: creal.
-
-(**********)
-Lemma Ropp_lt_gt_0_contravar : forall r, r > 0 -> - r < 0.
-Proof.
- intros; rewrite <- Ropp_0; auto with creal.
-Qed.
-Hint Resolve Ropp_lt_gt_0_contravar: creal.
-
-Lemma Ropp_gt_lt_0_contravar : forall r, r < 0 -> - r > 0.
-Proof.
- intros; rewrite <- Ropp_0; auto with creal.
-Qed.
-Hint Resolve Ropp_gt_lt_0_contravar: creal.
-
-(**********)
-Lemma Ropp_0_le_ge_contravar : forall r, 0 <= r -> 0 >= - r.
-Proof.
- intros; setoid_replace 0 with (-0); auto with creal. ring.
-Qed.
-Hint Resolve Ropp_0_le_ge_contravar: creal.
-
-Lemma Ropp_0_ge_le_contravar : forall r, 0 >= r -> 0 <= - r.
-Proof.
- intros; setoid_replace 0 with (-0); auto with creal. ring.
-Qed.
-Hint Resolve Ropp_0_ge_le_contravar: creal.
-
-(** *** Cancellation *)
-
-Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2.
-Proof.
- intros. intro abs. apply Ropp_lt_gt_contravar in abs. contradiction.
-Qed.
-Hint Immediate Ropp_le_cancel: creal.
-
-Lemma Ropp_ge_cancel : forall r1 r2, - r2 >= - r1 -> r1 >= r2.
-Proof.
- intros. apply Ropp_le_cancel. apply H.
-Qed.
-
-(*********************************************************)
-(** ** Order and multiplication *)
-(*********************************************************)
-
-(** Remark: [Rmult_lt_compat_l] is an axiom *)
-
-(** *** Covariant compatibility *)
-
-Lemma Rmult_lt_compat_r : forall r r1 r2, 0 < r -> r1 < r2 -> r1 * r < r2 * r.
-Proof.
- intros; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with creal.
-Qed.
-Hint Resolve Rmult_lt_compat_r : core.
-
-Lemma Rmult_gt_compat_r : forall r r1 r2, r > 0 -> r1 > r2 -> r1 * r > r2 * r.
-Proof.
- intros. apply Rmult_lt_compat_r; assumption.
-Qed.
-
-Lemma Rmult_gt_compat_l : forall r r1 r2, r > 0 -> r1 > r2 -> r * r1 > r * r2.
-Proof.
- intros. apply Rmult_lt_compat_l; assumption.
-Qed.
-
-Lemma Rmult_gt_0_lt_compat :
- forall r1 r2 r3 r4,
- r3 > 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
-Proof.
- intros; apply Rlt_trans with (r2 * r3); auto with creal.
-Qed.
-
-(*********)
-Lemma Rmult_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 * r2.
-Proof.
- intros; setoid_replace 0 with (0 * r2); auto with creal.
- rewrite Rmult_0_l. reflexivity.
-Qed.
-
-Lemma Rmult_gt_0_compat : forall r1 r2, r1 > 0 -> r2 > 0 -> r1 * r2 > 0.
-Proof.
- apply Rmult_lt_0_compat.
-Qed.
-
-(** *** Contravariant compatibility *)
-
-Lemma Rmult_lt_gt_compat_neg_l :
- forall r r1 r2, r < 0 -> r1 < r2 -> r * r1 > r * r2.
-Proof.
- intros; setoid_replace r with (- - r); auto with creal.
- rewrite (Ropp_mult_distr_l_reverse (- r));
- rewrite (Ropp_mult_distr_l_reverse (- r)).
- apply Ropp_lt_gt_contravar; auto with creal.
- rewrite Ropp_involutive. reflexivity.
-Qed.
-
-(** *** Cancellation *)
-
-Lemma Rinv_0_lt_compat : forall r (rpos : 0 < r), 0 < (/ r) (inr rpos).
-Proof.
- intros. apply CRinv_0_lt_compat. exact rpos.
-Qed.
-
-Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
-Proof.
- intros z x y H H0.
- apply (Rmult_lt_compat_l ((/z) (inr H))) in H0.
- repeat rewrite <- Rmult_assoc in H0. rewrite Rinv_l in H0.
- repeat rewrite Rmult_1_l in H0. apply H0.
- apply Rinv_0_lt_compat.
-Qed.
-
-Lemma Rmult_lt_reg_r : forall r r1 r2, 0 < r -> r1 * r < r2 * r -> r1 < r2.
-Proof.
- intros.
- apply Rmult_lt_reg_l with r.
- exact H.
- now rewrite 2!(Rmult_comm r).
-Qed.
-
-Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
-Proof.
- intros. apply Rmult_lt_reg_l in H0; assumption.
-Qed.
-
-Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2.
-Proof.
- intros. intro abs. apply (Rmult_lt_compat_l r) in abs.
- contradiction. apply H.
-Qed.
-
-Lemma Rmult_le_reg_r : forall r r1 r2, 0 < r -> r1 * r <= r2 * r -> r1 <= r2.
-Proof.
- intros.
- apply Rmult_le_reg_l with r.
- exact H.
- now rewrite 2!(Rmult_comm r).
-Qed.
-
-(*********************************************************)
-(** ** Order and substraction *)
-(*********************************************************)
-
-Lemma Rlt_minus : forall r1 r2, r1 < r2 -> r1 - r2 < 0.
-Proof.
- intros; apply (Rplus_lt_reg_l r2).
- setoid_replace (r2 + (r1 - r2)) with r1 by ring.
- now rewrite Rplus_0_r.
-Qed.
-Hint Resolve Rlt_minus: creal.
-
-Lemma Rgt_minus : forall r1 r2, r1 > r2 -> r1 - r2 > 0.
-Proof.
- intros; apply (Rplus_lt_reg_l r2).
- setoid_replace (r2 + (r1 - r2)) with r1 by ring.
- now rewrite Rplus_0_r.
-Qed.
-
-Lemma Rlt_Rminus : forall a b, a < b -> 0 < b - a.
-Proof.
- intros a b; apply Rgt_minus.
-Qed.
-
-(**********)
-Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0.
-Proof.
- intros. intro abs. apply (Rplus_lt_compat_l r2) in abs.
- unfold Rminus in abs.
- rewrite Rplus_0_r, Rplus_comm, Rplus_assoc, Rplus_opp_l, Rplus_0_r in abs.
- contradiction.
-Qed.
-
-Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0.
-Proof.
- intros. intro abs. apply (Rplus_lt_compat_l r2) in abs.
- unfold Rminus in abs.
- rewrite Rplus_0_r, Rplus_comm, Rplus_assoc, Rplus_opp_l, Rplus_0_r in abs.
- contradiction.
-Qed.
-
-(**********)
-Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2.
-Proof.
- intros. rewrite <- (Rplus_opp_r r2) in H.
- apply Rplus_lt_reg_r in H. exact H.
-Qed.
-
-Lemma Rminus_gt : forall r1 r2, r1 - r2 > 0 -> r1 > r2.
-Proof.
- intros. rewrite <- (Rplus_opp_r r2) in H.
- apply Rplus_lt_reg_r in H. exact H.
-Qed.
-
-Lemma Rminus_gt_0_lt : forall a b, 0 < b - a -> a < b.
-Proof. intro; intro; apply Rminus_gt. Qed.
-
-(**********)
-Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2.
-Proof.
- intros. rewrite <- (Rplus_opp_r r2) in H.
- apply Rplus_le_reg_r in H. exact H.
-Qed.
-
-Lemma Rminus_ge : forall r1 r2, r1 - r2 >= 0 -> r1 >= r2.
-Proof.
- intros. rewrite <- (Rplus_opp_r r2) in H.
- apply Rplus_le_reg_r in H. exact H.
-Qed.
-
-(**********)
-Lemma tech_Rplus : forall r s, 0 <= r -> 0 < s -> r + s <> 0.
-Proof.
- intros; apply not_eq_sym; apply Rlt_not_eq.
- rewrite Rplus_comm; setoid_replace 0 with (0 + 0); auto with creal. ring.
-Qed.
-Hint Immediate tech_Rplus: creal.
-
-(*********************************************************)
-(** ** Zero is less than one *)
-(*********************************************************)
-
-Lemma Rle_0_1 : 0 <= 1.
-Proof.
- intro abs. apply (Rlt_asym 0 1).
- apply Rlt_0_1. apply abs.
-Qed.
-
-
-(*********************************************************)
-(** ** Inverse *)
-(*********************************************************)
-
-Lemma Rinv_1 : forall nz : 1 # 0, (/ 1) nz == 1.
-Proof.
- intros. rewrite <- (Rmult_1_l ((/1) nz)). rewrite Rinv_r.
- reflexivity. right. apply Rlt_0_1.
-Qed.
-Hint Resolve Rinv_1: creal.
-
-(*********)
-Lemma Ropp_inv_permute : forall r (rnz : r # 0) (ronz : (-r) # 0),
- - (/ r) rnz == (/ - r) ronz.
-Proof.
- intros.
- apply (Rmult_eq_reg_l (-r)). rewrite Rinv_r.
- rewrite <- Ropp_mult_distr_l. rewrite <- Ropp_mult_distr_r.
- rewrite Ropp_involutive. rewrite Rinv_r. reflexivity.
- exact rnz. exact ronz. exact ronz.
-Qed.
-
-(*********)
-Lemma Rinv_neq_0_compat : forall r (rnz : r # 0), ((/ r) rnz) # 0.
-Proof.
- intros. destruct rnz. left.
- assert (0 < (/-r) (inr (Ropp_0_gt_lt_contravar _ c))).
- { apply Rinv_0_lt_compat. }
- rewrite <- (Ropp_inv_permute _ (inl c)) in H.
- apply Ropp_lt_cancel. rewrite Ropp_0. exact H.
- right. apply Rinv_0_lt_compat.
-Qed.
-Hint Resolve Rinv_neq_0_compat: creal.
-
-(*********)
-Lemma Rinv_involutive : forall r (rnz : r # 0) (rinz : ((/ r) rnz) # 0),
- (/ ((/ r) rnz)) rinz == r.
-Proof.
- intros. apply (Rmult_eq_reg_l ((/r) rnz)). rewrite Rinv_r.
- rewrite Rinv_l. reflexivity. exact rinz. exact rinz.
-Qed.
-Hint Resolve Rinv_involutive: creal.
-
-(*********)
-Lemma Rinv_mult_distr :
- forall r1 r2 (r1nz : r1 # 0) (r2nz : r2 # 0) (rmnz : (r1*r2) # 0),
- (/ (r1 * r2)) rmnz == (/ r1) r1nz * (/ r2) r2nz.
-Proof.
- intros. apply (Rmult_eq_reg_l r1). 2: exact r1nz.
- rewrite <- Rmult_assoc. rewrite Rinv_r. rewrite Rmult_1_l.
- apply (Rmult_eq_reg_l r2). 2: exact r2nz.
- rewrite Rinv_r. rewrite <- Rmult_assoc.
- rewrite (Rmult_comm r2 r1). rewrite Rinv_r.
- reflexivity. exact rmnz. exact r2nz. exact r1nz.
-Qed.
-
-Lemma Rinv_r_simpl_r : forall r1 r2 (rnz : r1 # 0), r1 * (/ r1) rnz * r2 == r2.
-Proof.
- intros; transitivity (1 * r2); auto with creal.
- rewrite Rinv_r; auto with creal. rewrite Rmult_1_l. reflexivity.
-Qed.
-
-Lemma Rinv_r_simpl_l : forall r1 r2 (rnz : r1 # 0),
- r2 * r1 * (/ r1) rnz == r2.
-Proof.
- intros. rewrite Rmult_assoc. rewrite Rinv_r, Rmult_1_r.
- reflexivity. exact rnz.
-Qed.
-
-Lemma Rinv_r_simpl_m : forall r1 r2 (rnz : r1 # 0),
- r1 * r2 * (/ r1) rnz == r2.
-Proof.
- intros. rewrite Rmult_comm, <- Rmult_assoc, Rinv_l, Rmult_1_l.
- reflexivity.
-Qed.
-Hint Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m: creal.
-
-(*********)
-Lemma Rinv_mult_simpl :
- forall r1 r2 r3 (r1nz : r1 # 0) (r2nz : r2 # 0),
- r1 * (/ r2) r2nz * (r3 * (/ r1) r1nz) == r3 * (/ r2) r2nz.
-Proof.
- intros a b c; intros.
- transitivity (a * (/ a) r1nz * (c * (/ b) r2nz)); auto with creal.
- ring.
-Qed.
-
-Lemma Rinv_eq_compat : forall x y (rxnz : x # 0) (rynz : y # 0),
- x == y
- -> (/ x) rxnz == (/ y) rynz.
-Proof.
- intros. apply (Rmult_eq_reg_l x). rewrite Rinv_r.
- rewrite H. rewrite Rinv_r. reflexivity.
- exact rynz. exact rxnz. exact rxnz.
-Qed.
-
-
-(*********************************************************)
-(** ** Order and inverse *)
-(*********************************************************)
-
-Lemma Rinv_lt_0_compat : forall r (rneg : r < 0), (/ r) (inl rneg) < 0.
-Proof.
- intros. assert (0 < (/-r) (inr (Ropp_0_gt_lt_contravar r rneg))).
- { apply Rinv_0_lt_compat. }
- rewrite <- Ropp_inv_permute in H. rewrite <- Ropp_0 in H.
- apply Ropp_lt_cancel in H. apply H.
-Qed.
-Hint Resolve Rinv_lt_0_compat: creal.
-
-
-
-(*********************************************************)
-(** ** Miscellaneous *)
-(*********************************************************)
-
-(**********)
-Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1.
-Proof.
- intros. apply (Rle_lt_trans _ (r+0)). rewrite Rplus_0_r.
- exact H. apply Rplus_lt_compat_l. apply Rlt_0_1.
-Qed.
-Hint Resolve Rle_lt_0_plus_1: creal.
-
-(**********)
-Lemma Rlt_plus_1 : forall r, r < r + 1.
-Proof.
- intro r. rewrite <- Rplus_0_r. rewrite Rplus_assoc.
- apply Rplus_lt_compat_l. rewrite Rplus_0_l. exact Rlt_0_1.
-Qed.
-Hint Resolve Rlt_plus_1: creal.
-
-(**********)
-Lemma tech_Rgt_minus : forall r1 r2, 0 < r2 -> r1 > r1 - r2.
-Proof.
- intros. apply (Rplus_lt_reg_r r2).
- unfold Rminus, CRminus; rewrite Rplus_assoc, Rplus_opp_l.
- apply Rplus_lt_compat_l. exact H.
-Qed.
-
-(*********************************************************)
-(** ** Injection from [N] to [R] *)
-(*********************************************************)
-
-(**********)
-Lemma S_INR : forall n:nat, INR (S n) == INR n + 1.
-Proof.
- intro; destruct n. rewrite Rplus_0_l. reflexivity. reflexivity.
-Qed.
-
-(**********)
-Lemma IZN : forall n:Z, (0 <= n)%Z -> { m : nat | n = Z.of_nat m }.
-Proof.
- intros. exists (Z.to_nat n). rewrite Z2Nat.id. reflexivity. assumption.
-Qed.
-
-Lemma le_succ_r_T : forall n m : nat, (n <= S m)%nat -> {(n <= m)%nat} + {n = S m}.
-Proof.
- intros. destruct (le_lt_dec n m). left. exact l.
- right. apply Nat.le_succ_r in H. destruct H.
- exfalso. apply (le_not_lt n m); assumption. exact H.
-Qed.
-
-Lemma lt_INR : forall n m:nat, (n < m)%nat -> INR n < INR m.
-Proof.
- induction m.
- - intros. exfalso. inversion H.
- - intros. unfold lt in H. apply le_S_n in H. destruct m.
- assert (n = 0)%nat.
- { inversion H. reflexivity. }
- subst n. apply Rlt_0_1. apply le_succ_r_T in H. destruct H.
- rewrite S_INR. apply (Rlt_trans _ (INR (S m) + 0)).
- rewrite Rplus_comm, Rplus_0_l. apply IHm.
- apply le_n_S. exact l.
- apply Rplus_lt_compat_l. exact Rlt_0_1.
- subst n. rewrite (S_INR (S m)). rewrite <- (Rplus_0_l).
- rewrite (Rplus_comm 0), Rplus_assoc.
- apply Rplus_lt_compat_l. rewrite Rplus_0_l.
- exact Rlt_0_1.
-Qed.
-
-(**********)
-Lemma S_O_plus_INR : forall n:nat, INR (1 + n) == INR 1 + INR n.
-Proof.
- intros; destruct n.
- - rewrite Rplus_comm, Rplus_0_l. reflexivity.
- - rewrite Rplus_comm. reflexivity.
-Qed.
-
-(**********)
-Lemma plus_INR : forall n m:nat, INR (n + m) == INR n + INR m.
-Proof.
- intros n m; induction n as [| n Hrecn].
- - rewrite Rplus_0_l. reflexivity.
- - replace (S n + m)%nat with (S (n + m)); auto with arith.
- repeat rewrite S_INR.
- rewrite Hrecn; ring.
-Qed.
-
-(**********)
-Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) == INR n - INR m.
-Proof.
- intros n m le; pattern m, n; apply le_elim_rel.
- intros. rewrite <- minus_n_O. simpl.
- unfold Rminus, CRminus. rewrite Ropp_0, Rplus_0_r. reflexivity.
- intros; repeat rewrite S_INR; simpl.
- rewrite H0. unfold Rminus. ring. exact le.
-Qed.
-
-(*********)
-Lemma mult_INR : forall n m:nat, INR (n * m) == INR n * INR m.
-Proof.
- intros n m; induction n as [| n Hrecn].
- - rewrite Rmult_0_l. reflexivity.
- - intros; repeat rewrite S_INR; simpl.
- rewrite plus_INR. rewrite Hrecn; ring.
-Qed.
-
-Lemma INR_IPR : forall p, INR (Pos.to_nat p) == IPR p.
-Proof.
- assert (H: forall p, 2 * INR (Pos.to_nat p) == IPR_2 p).
- { induction p as [p|p|].
- - unfold IPR_2; rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- IHp.
- rewrite Rplus_comm. reflexivity.
- - unfold IPR_2; now rewrite Pos2Nat.inj_xO, mult_INR, <- IHp.
- - apply Rmult_1_r. }
- intros [p|p|] ; unfold IPR.
- rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- H.
- apply Rplus_comm.
- now rewrite Pos2Nat.inj_xO, mult_INR, <- H.
- easy.
-Qed.
-
-Fixpoint pow (r:R) (n:nat) : R :=
- match n with
- | O => 1
- | S n => r * (pow r n)
- end.
-
-Lemma Rpow_eq_compat : forall (x y : R) (n : nat),
- x == y -> pow x n == pow y n.
-Proof.
- intro x. induction n.
- - reflexivity.
- - intros. simpl. rewrite IHn, H. reflexivity. exact H.
-Qed.
-
-Lemma pow_INR (m n: nat) : INR (m ^ n) == pow (INR m) n.
-Proof. now induction n as [|n IHn];[ | simpl; rewrite mult_INR, IHn]. Qed.
-
-(*********)
-Lemma lt_0_INR : forall n:nat, (0 < n)%nat -> 0 < INR n.
-Proof.
- intros. apply (lt_INR 0). exact H.
-Qed.
-Hint Resolve lt_0_INR: creal.
-
-Lemma lt_1_INR : forall n:nat, (1 < n)%nat -> 1 < INR n.
-Proof.
- apply lt_INR.
-Qed.
-Hint Resolve lt_1_INR: creal.
-
-(**********)
-Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (Pos.to_nat p).
-Proof.
- intro; apply lt_0_INR.
- simpl; auto with creal.
- apply Pos2Nat.is_pos.
-Qed.
-Hint Resolve pos_INR_nat_of_P: creal.
-
-(**********)
-Lemma pos_INR : forall n:nat, 0 <= INR n.
-Proof.
- intro n; case n.
- simpl; auto with creal.
- auto with arith creal.
-Qed.
-Hint Resolve pos_INR: creal.
-
-Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat.
-Proof.
- intros n m. revert n.
- induction m ; intros n H.
- - elim (Rlt_irrefl 0).
- apply Rle_lt_trans with (2 := H).
- apply pos_INR.
- - destruct n as [|n].
- apply Nat.lt_0_succ.
- apply lt_n_S, IHm.
- rewrite 2!S_INR in H.
- apply Rplus_lt_reg_r with (1 := H).
-Qed.
-Hint Resolve INR_lt: creal.
-
-(*********)
-Lemma le_INR : forall n m:nat, (n <= m)%nat -> INR n <= INR m.
-Proof.
- simple induction 1; intros; auto with creal.
- rewrite S_INR.
- apply Rle_trans with (INR m0); auto with creal.
-Qed.
-Hint Resolve le_INR: creal.
-
-(**********)
-Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat.
-Proof.
- red; intros n H H1.
- apply H.
- rewrite H1; trivial.
-Qed.
-Hint Immediate INR_not_0: creal.
-
-(**********)
-Lemma not_0_INR : forall n:nat, n <> 0%nat -> 0 < INR n.
-Proof.
- intro n; case n.
- intro; absurd (0%nat = 0%nat); trivial.
- intros; rewrite S_INR.
- apply (Rlt_le_trans _ (0 + 1)). rewrite Rplus_0_l. apply Rlt_0_1.
- apply Rplus_le_compat_r. apply pos_INR.
-Qed.
-Hint Resolve not_0_INR: creal.
-
-Lemma not_INR : forall n m:nat, n <> m -> INR n # INR m.
-Proof.
- intros n m H; case (le_lt_dec n m); intros H1.
- left. apply lt_INR.
- case (le_lt_or_eq _ _ H1); intros H2.
- exact H2. contradiction.
- right. apply lt_INR. exact H1.
-Qed.
-Hint Resolve not_INR: creal.
-
-Lemma INR_eq : forall n m:nat, INR n == INR m -> n = m.
-Proof.
- intros n m HR.
- destruct (dec_eq_nat n m) as [H|H].
- exact H. exfalso.
- apply not_INR in H. destruct HR,H; contradiction.
-Qed.
-Hint Resolve INR_eq: creal.
-
-Lemma INR_le : forall n m:nat, INR n <= INR m -> (n <= m)%nat.
-Proof.
- intros n m. revert n.
- induction m ; intros n H.
- - destruct n. apply le_refl. exfalso.
- rewrite S_INR in H.
- assert (0 + 1 <= 0). apply (Rle_trans _ (INR n + 1)).
- apply Rplus_le_compat_r. apply pos_INR. apply H.
- rewrite Rplus_0_l in H0. apply H0. apply Rlt_0_1.
- - destruct n as [|n]. apply le_0_n.
- apply le_n_S, IHm.
- rewrite 2!S_INR in H.
- apply Rplus_le_reg_r in H. apply H.
-Qed.
-Hint Resolve INR_le: creal.
-
-Lemma not_1_INR : forall n:nat, n <> 1%nat -> INR n # 1.
-Proof.
- intros n.
- apply not_INR.
-Qed.
-Hint Resolve not_1_INR: creal.
-
-(*********************************************************)
-(** ** Injection from [Z] to [R] *)
-(*********************************************************)
-
-Lemma IPR_pos : forall p:positive, 0 < IPR p.
-Proof.
- intro p. rewrite <- INR_IPR. apply (lt_INR 0), Pos2Nat.is_pos.
-Qed.
-
-Lemma IPR_double : forall p:positive, IPR (2*p) == 2 * IPR p.
-Proof.
- intro p. destruct p; try reflexivity.
- rewrite Rmult_1_r. reflexivity.
-Qed.
-
-Lemma INR_IZR_INZ : forall n:nat, INR n == IZR (Z.of_nat n).
-Proof.
- intros [|n].
- easy.
- simpl Z.of_nat. unfold IZR.
- now rewrite <- INR_IPR, SuccNat2Pos.id_succ.
-Qed.
-
-Lemma plus_IZR_NEG_POS :
- forall p q:positive, IZR (Zpos p + Zneg q) == IZR (Zpos p) + IZR (Zneg q).
-Proof.
- intros p q; simpl. rewrite Z.pos_sub_spec.
- case Pos.compare_spec; intros H; unfold IZR.
- subst. ring.
- rewrite <- 3!INR_IPR, Pos2Nat.inj_sub.
- rewrite minus_INR.
- 2: (now apply lt_le_weak, Pos2Nat.inj_lt).
- ring.
- trivial.
- rewrite <- 3!INR_IPR, Pos2Nat.inj_sub.
- rewrite minus_INR.
- 2: (now apply lt_le_weak, Pos2Nat.inj_lt).
- unfold Rminus. ring. trivial.
-Qed.
-
-Lemma plus_IPR : forall n m:positive, IPR (n + m) == IPR n + IPR m.
-Proof.
- intros. repeat rewrite <- INR_IPR.
- rewrite Pos2Nat.inj_add. apply plus_INR.
-Qed.
-
-(**********)
-Lemma plus_IZR : forall n m:Z, IZR (n + m) == IZR n + IZR m.
-Proof.
- intro z; destruct z; intro t; destruct t; intros.
- - rewrite Rplus_0_l. reflexivity.
- - rewrite Rplus_0_l. rewrite Z.add_0_l. reflexivity.
- - rewrite Rplus_0_l. reflexivity.
- - rewrite Rplus_comm,Rplus_0_l. reflexivity.
- - rewrite <- Pos2Z.inj_add. unfold IZR. apply plus_IPR.
- - apply plus_IZR_NEG_POS.
- - rewrite Rplus_comm,Rplus_0_l, Z.add_0_r. reflexivity.
- - rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS.
- - simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add, plus_INR.
- ring.
-Qed.
-
-Lemma mult_IPR : forall n m:positive, IPR (n * m) == IPR n * IPR m.
-Proof.
- intros. repeat rewrite <- INR_IPR.
- rewrite Pos2Nat.inj_mul. apply mult_INR.
-Qed.
-
-(**********)
-Lemma mult_IZR : forall n m:Z, IZR (n * m) == IZR n * IZR m.
-Proof.
- intros n m. destruct n.
- - rewrite Rmult_0_l. rewrite Z.mul_0_l. reflexivity.
- - destruct m. rewrite Z.mul_0_r, Rmult_0_r. reflexivity.
- simpl; unfold IZR. apply mult_IPR.
- simpl. unfold IZR. rewrite mult_IPR. ring.
- - destruct m. rewrite Z.mul_0_r, Rmult_0_r. reflexivity.
- simpl. unfold IZR. rewrite mult_IPR. ring.
- simpl. unfold IZR. rewrite mult_IPR. ring.
-Qed.
-
-Lemma pow_IZR : forall z n, pow (IZR z) n == IZR (Z.pow z (Z.of_nat n)).
-Proof.
- intros z [|n];simpl; trivial. reflexivity.
- rewrite Zpower_pos_nat.
- rewrite SuccNat2Pos.id_succ. unfold Zpower_nat;simpl.
- rewrite mult_IZR.
- induction n;simpl;trivial. reflexivity.
- rewrite mult_IZR;ring[IHn].
-Qed.
-
-(**********)
-Lemma succ_IZR : forall n:Z, IZR (Z.succ n) == IZR n + 1.
-Proof.
- intro; unfold Z.succ; apply plus_IZR.
-Qed.
-
-(**********)
-Lemma opp_IZR : forall n:Z, IZR (- n) == - IZR n.
-Proof.
- intros [|z|z]; unfold IZR; simpl; auto with creal.
- ring.
- reflexivity. rewrite Ropp_involutive. reflexivity.
-Qed.
-
-Definition Ropp_Ropp_IZR := opp_IZR.
-
-Lemma minus_IZR : forall n m:Z, IZR (n - m) == IZR n - IZR m.
-Proof.
- intros; unfold Z.sub, Rminus,CRminus.
- rewrite <- opp_IZR.
- apply plus_IZR.
-Qed.
-
-(**********)
-Lemma Z_R_minus : forall n m:Z, IZR n - IZR m == IZR (n - m).
-Proof.
- intros z1 z2; unfold Rminus,CRminus; unfold Z.sub.
- rewrite <- (Ropp_Ropp_IZR z2); symmetry; apply plus_IZR.
-Qed.
-
-(**********)
-Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
-Proof.
- intro z; case z; simpl; intros.
- elim (Rlt_irrefl _ H).
- easy.
- elim (Rlt_not_le _ _ H).
- unfold IZR.
- rewrite <- INR_IPR.
- auto with creal.
-Qed.
-
-(**********)
-Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z.
-Proof.
- intros z1 z2 H; apply Z.lt_0_sub.
- apply lt_0_IZR.
- rewrite <- Z_R_minus.
- exact (Rgt_minus (IZR z2) (IZR z1) H).
-Qed.
-
-(**********)
-Lemma eq_IZR_R0 : forall n:Z, IZR n == 0 -> n = 0%Z.
-Proof.
- intro z; destruct z; simpl; intros; auto with zarith.
- unfold IZR in H. rewrite <- INR_IPR in H.
- apply (INR_eq _ 0) in H.
- exfalso. pose proof (Pos2Nat.is_pos p).
- rewrite H in H0. inversion H0.
- unfold IZR in H. rewrite <- INR_IPR in H.
- apply (Rplus_eq_compat_r (INR (Pos.to_nat p))) in H.
- rewrite Rplus_opp_l, Rplus_0_l in H. symmetry in H.
- apply (INR_eq _ 0) in H.
- exfalso. pose proof (Pos2Nat.is_pos p).
- rewrite H in H0. inversion H0.
-Qed.
-
-(**********)
-Lemma eq_IZR : forall n m:Z, IZR n == IZR m -> n = m.
-Proof.
- intros z1 z2 H; generalize (Rminus_diag_eq (IZR z1) (IZR z2) H);
- rewrite (Z_R_minus z1 z2); intro; generalize (eq_IZR_R0 (z1 - z2) H0);
- intro; omega.
-Qed.
-
-Lemma IZR_lt : forall n m:Z, (n < m)%Z -> IZR n < IZR m.
-Proof.
- assert (forall n:Z, Z.lt 0 n -> 0 < IZR n) as posCase.
- { intros. destruct (IZN n). apply Z.lt_le_incl. apply H.
- subst n. rewrite <- INR_IZR_INZ. apply (lt_INR 0).
- apply Nat2Z.inj_lt. apply H. }
- intros. apply (Rplus_lt_reg_r (-(IZR n))).
- pose proof minus_IZR. unfold Rminus,CRminus in H0.
- repeat rewrite <- H0. unfold Zminus.
- rewrite Z.add_opp_diag_r. apply posCase.
- rewrite (Z.add_lt_mono_l _ _ n). ring_simplify. apply H.
-Qed.
-
-(**********)
-Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n # 0.
-Proof.
- intros. destruct n. exfalso. apply H. reflexivity.
- right. apply (IZR_lt 0). reflexivity.
- left. apply (IZR_lt _ 0). reflexivity.
-Qed.
-
-(*********)
-Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z.
-Proof.
- intros. destruct n. discriminate. discriminate.
- exfalso. rewrite <- Ropp_0 in H. unfold IZR in H. apply H.
- apply Ropp_gt_lt_contravar. rewrite <- INR_IPR.
- apply (lt_INR 0). apply Pos2Nat.is_pos.
-Qed.
-
-(**********)
-Lemma le_IZR : forall n m:Z, IZR n <= IZR m -> (n <= m)%Z.
-Proof.
- intros. apply (Rplus_le_compat_r (-(IZR n))) in H.
- pose proof minus_IZR. unfold Rminus,CRminus in H0.
- repeat rewrite <- H0 in H. unfold Zminus in H.
- rewrite Z.add_opp_diag_r in H.
- apply (Z.add_le_mono_l _ _ (-n)). ring_simplify.
- rewrite Z.add_comm. apply le_0_IZR. apply H.
-Qed.
-
-(**********)
-Lemma le_IZR_R1 : forall n:Z, IZR n <= 1 -> (n <= 1)%Z.
-Proof.
- intros. apply (le_IZR n 1). apply H.
-Qed.
-
-(**********)
-Lemma IZR_ge : forall n m:Z, (n >= m)%Z -> IZR n >= IZR m.
-Proof.
- intros m n H; apply Rnot_lt_ge. intro abs.
- apply lt_IZR in abs. omega.
-Qed.
-
-Lemma IZR_le : forall n m:Z, (n <= m)%Z -> IZR n <= IZR m.
-Proof.
- intros m n H; apply Rnot_lt_ge. intro abs.
- apply lt_IZR in abs. omega.
-Qed.
-
-Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 # IZR z2.
-Proof.
- intros. destruct (not_0_IZR (z1-z2)).
- intro abs. apply H. rewrite <- (Z.add_cancel_r _ _ (-z2)).
- ring_simplify. exact abs.
- left. apply IZR_lt. apply (lt_IZR _ 0) in c.
- rewrite (Z.add_lt_mono_r _ _ (-z2)).
- ring_simplify. exact c.
- right. apply IZR_lt. apply (lt_IZR 0) in c.
- rewrite (Z.add_lt_mono_l _ _ (-z2)).
- ring_simplify. rewrite Z.add_comm. exact c.
-Qed.
-
-Hint Extern 0 (IZR _ <= IZR _) => apply IZR_le, Zle_bool_imp_le, eq_refl : creal.
-Hint Extern 0 (IZR _ >= IZR _) => apply Rle_ge, IZR_le, Zle_bool_imp_le, eq_refl : creal.
-Hint Extern 0 (IZR _ < IZR _) => apply IZR_lt, eq_refl : creal.
-Hint Extern 0 (IZR _ > IZR _) => apply IZR_lt, eq_refl : creal.
-Hint Extern 0 (IZR _ <> IZR _) => apply IZR_neq, Zeq_bool_neq, eq_refl : creal.
-
-Lemma one_IZR_lt1 : forall n:Z, -(1) < IZR n < 1 -> n = 0%Z.
-Proof.
- intros z [H1 H2].
- apply Z.le_antisymm.
- apply Z.lt_succ_r; apply lt_IZR; trivial.
- change 0%Z with (Z.succ (-1)).
- apply Z.le_succ_l; apply lt_IZR; trivial.
-Qed.
-
-Lemma one_IZR_r_R1 :
- forall r (n m:Z), r < IZR n <= r + 1 -> r < IZR m <= r + 1 -> n = m.
-Proof.
- intros r z x [H1 H2] [H3 H4].
- cut ((z - x)%Z = 0%Z); auto with zarith.
- apply one_IZR_lt1.
- split; rewrite <- Z_R_minus.
- setoid_replace (-(1)) with (r - (r + 1)).
- unfold CReal_minus; apply Rplus_lt_le_compat; auto with creal.
- ring.
- setoid_replace 1 with (r + 1 - r).
- unfold CReal_minus; apply Rplus_le_lt_compat; auto with creal.
- ring.
-Qed.
-
-
-(**********)
-Lemma single_z_r_R1 :
- forall r (n m:Z),
- r < IZR n -> IZR n <= r + 1 -> r < IZR m -> IZR m <= r + 1 -> n = m.
-Proof.
- intros; apply one_IZR_r_R1 with r; auto.
-Qed.
-
-(**********)
-Lemma tech_single_z_r_R1 :
- forall r (n:Z),
- r < IZR n ->
- IZR n <= r + 1 ->
- { s : Z & prod (s <> n) (r < IZR s <= r + 1) } -> False.
-Proof.
- intros r z H1 H2 [s [H3 [H4 H5]]].
- apply H3; apply single_z_r_R1 with r; trivial.
-Qed.
-
-
-Lemma Rmult_le_compat_l_half : forall r r1 r2,
- 0 < r -> r1 <= r2 -> r * r1 <= r * r2.
-Proof.
- intros. intro abs. apply (Rmult_lt_reg_l) in abs.
- contradiction. apply H.
-Qed.
-
-Lemma INR_CR_of_Q : forall (n : nat),
- CR_of_Q CR (Z.of_nat n # 1) == INR n.
-Proof.
- induction n.
- - apply CR_of_Q_zero.
- - transitivity (CR_of_Q CR (1 + (Z.of_nat n # 1))).
- replace (S n) with (1 + n)%nat. 2: reflexivity.
- rewrite (Nat2Z.inj_add 1 n).
- apply CR_of_Q_proper.
- rewrite <- (Qinv_plus_distr (Z.of_nat 1) (Z.of_nat n) 1). reflexivity.
- rewrite CR_of_Q_plus. rewrite IHn. clear IHn.
- setoid_replace (INR (S n)) with (1 + INR n).
- rewrite CR_of_Q_one. reflexivity.
- simpl. destruct n. rewrite Rplus_0_r. reflexivity.
- rewrite Rplus_comm. reflexivity.
-Qed.
-
-Definition Rup_nat (x : R)
- : { n : nat & x < INR n }.
-Proof.
- intros. destruct (CR_archimedean CR x) as [p maj].
- exists (Pos.to_nat p).
- rewrite <- INR_CR_of_Q, positive_nat_Z. exact maj.
-Qed.
-
-Fixpoint Rarchimedean_ind (x:R) (n : Z) (p:nat) { struct p }
- : (x < IZR n < x + 2 + (INR p))
- -> { n:Z & x < IZR n < x+2 }.
-Proof.
- destruct p.
- - exists n. destruct H. split. exact r. rewrite Rplus_0_r in r0; exact r0.
- - intros. destruct (linear_order_T (x+1+INR p) (IZR n) (x+2+INR p)).
- do 2 rewrite Rplus_assoc. apply Rplus_lt_compat_l, Rplus_lt_compat_r.
- rewrite <- (Rplus_0_r 1). apply Rplus_lt_compat_l. apply Rlt_0_1.
- + apply (Rarchimedean_ind x (n-1)%Z p). unfold Zminus.
- split; rewrite plus_IZR, opp_IZR.
- setoid_replace (IZR 1) with 1. 2: reflexivity.
- apply (Rplus_lt_reg_l 1). ring_simplify.
- apply (Rle_lt_trans _ (x + 1 + INR p)). 2: exact r.
- rewrite Rplus_assoc. apply Rplus_le_compat_l.
- rewrite <- (Rplus_0_r 1), Rplus_assoc. apply Rplus_le_compat_l.
- rewrite Rplus_0_l. apply (le_INR 0), le_0_n.
- setoid_replace (IZR 1) with 1. 2: reflexivity.
- apply (Rplus_lt_reg_l 1). ring_simplify.
- setoid_replace (x + 2 + INR p + 1) with (x + 2 + INR (S p)).
- apply H. rewrite S_INR. ring.
- + apply (Rarchimedean_ind x n p). split. apply H. exact r.
-Qed.
-
-Lemma Rarchimedean (x:R) : { n : Z & x < IZR n < x + 2 }.
-Proof.
- destruct (Rup_nat x) as [n nmaj].
- destruct (Rup_nat (INR n + - (x + 2))) as [p pmaj].
- apply (Rplus_lt_compat_r (x+2)) in pmaj.
- rewrite Rplus_assoc, Rplus_opp_l, Rplus_0_r in pmaj.
- apply (Rarchimedean_ind x (Z.of_nat n) p).
- split; rewrite <- INR_IZR_INZ. exact nmaj.
- rewrite Rplus_comm in pmaj. exact pmaj.
-Qed.
-
-Lemma Rmult_le_0_compat : forall a b,
- 0 <= a -> 0 <= b -> 0 <= a * b.
-Proof.
- (* Limit of (a + 1/n)*b when n -> infty. *)
- intros. intro abs.
- assert (0 < -(a*b)) as epsPos.
- { rewrite <- Ropp_0. apply Ropp_gt_lt_contravar. apply abs. }
- pose proof (Rup_nat (b * (/ (-(a*b))) (inr (Ropp_0_gt_lt_contravar _ abs))))
- as [n maj].
- destruct n as [|n].
- - simpl in maj. apply (Rmult_lt_compat_r (-(a*b))) in maj.
- rewrite Rmult_0_l in maj.
- rewrite Rmult_assoc in maj. rewrite Rinv_l in maj.
- rewrite Rmult_1_r in maj. contradiction.
- apply epsPos.
- - (* n > 0 *)
- assert (0 < INR (S n)) as nPos.
- { apply (lt_INR 0). apply le_n_S, le_0_n. }
- assert (b * (/ (INR (S n))) (inr nPos) < -(a*b)).
- { apply (Rmult_lt_reg_r (INR (S n))). apply nPos.
- rewrite Rmult_assoc. rewrite Rinv_l.
- rewrite Rmult_1_r. apply (Rmult_lt_compat_r (-(a*b))) in maj.
- rewrite Rmult_assoc in maj. rewrite Rinv_l in maj.
- rewrite Rmult_1_r in maj. rewrite Rmult_comm.
- apply maj. exact epsPos. }
- pose proof (Rmult_le_compat_l_half (a + (/ (INR (S n))) (inr nPos))
- 0 b).
- assert (a + (/ (INR (S n))) (inr nPos) > 0 + 0).
- apply Rplus_le_lt_compat. apply H. apply Rinv_0_lt_compat.
- rewrite Rplus_0_l in H3. specialize (H2 H3 H0).
- clear H3. rewrite Rmult_0_r in H2.
- apply H2. clear H2. rewrite Rmult_plus_distr_r.
- apply (Rplus_lt_compat_l (a*b)) in H1.
- rewrite Rplus_opp_r in H1.
- rewrite (Rmult_comm ((/ (INR (S n))) (inr nPos))).
- apply H1.
-Qed.
-
-Lemma Rmult_le_compat_l : forall r r1 r2,
- 0 <= r -> r1 <= r2 -> r * r1 <= r * r2.
-Proof.
- intros. apply Rminus_ge. apply Rge_minus in H0.
- unfold Rminus,CRminus. rewrite Ropp_mult_distr_r.
- rewrite <- Rmult_plus_distr_l.
- apply Rmult_le_0_compat; assumption.
-Qed.
-Hint Resolve Rmult_le_compat_l: creal.
-
-Lemma Rmult_le_compat_r : forall r r1 r2,
- 0 <= r -> r1 <= r2 -> r1 * r <= r2 * r.
-Proof.
- intros. rewrite <- (Rmult_comm r). rewrite <- (Rmult_comm r).
- apply Rmult_le_compat_l; assumption.
-Qed.
-Hint Resolve Rmult_le_compat_r: creal.
-
-(*********)
-Lemma Rmult_le_0_lt_compat :
- forall r1 r2 r3 r4,
- 0 <= r1 -> 0 <= r3 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
-Proof.
- intros. apply (Rle_lt_trans _ (r2 * r3)).
- apply Rmult_le_compat_r. apply H0. intro abs. apply (Rlt_asym r1 r2 H1).
- apply abs. apply Rmult_lt_compat_l. exact (Rle_lt_trans 0 r1 r2 H H1).
- exact H2.
-Qed.
-
-Lemma Rmult_le_compat_neg_l :
- forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r2 <= r * r1.
-Proof.
- intros. apply Ropp_le_cancel.
- do 2 rewrite Ropp_mult_distr_l. apply Rmult_le_compat_l.
- 2: exact H0. apply Ropp_0_ge_le_contravar. exact H.
-Qed.
-Hint Resolve Rmult_le_compat_neg_l: creal.
-
-Lemma Rmult_le_ge_compat_neg_l :
- forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r1 >= r * r2.
-Proof.
- intros; apply Rle_ge; auto with creal.
-Qed.
-Hint Resolve Rmult_le_ge_compat_neg_l: creal.
-
-
-(**********)
-Lemma Rmult_ge_compat_l :
- forall r r1 r2, r >= 0 -> r1 >= r2 -> r * r1 >= r * r2.
-Proof.
- intros. apply Rmult_le_compat_l; assumption.
-Qed.
-
-Lemma Rmult_ge_compat_r :
- forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r.
-Proof.
- intros. apply Rmult_le_compat_r; assumption.
-Qed.
-
-
-(**********)
-Lemma Rmult_le_compat :
- forall r1 r2 r3 r4,
- 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
-Proof.
- intros x y z t H' H'0 H'1 H'2.
- apply Rle_trans with (r2 := x * t); auto with creal.
- repeat rewrite (fun x => Rmult_comm x t).
- apply Rmult_le_compat_l; auto.
- apply Rle_trans with z; auto.
-Qed.
-Hint Resolve Rmult_le_compat: creal.
-
-Lemma Rmult_ge_compat :
- forall r1 r2 r3 r4,
- r2 >= 0 -> r4 >= 0 -> r1 >= r2 -> r3 >= r4 -> r1 * r3 >= r2 * r4.
-Proof. auto with creal rorders. Qed.
-
-Lemma mult_IPR_IZR : forall (n:positive) (m:Z), IZR (Z.pos n * m) == IPR n * IZR m.
-Proof.
- intros. rewrite mult_IZR. apply Rmult_eq_compat_r. reflexivity.
-Qed.
-
-Definition IQR (q:Q) : R :=
- match q with
- | Qmake a b => IZR a * (/ (IPR b)) (inr (IPR_pos b))
- end.
-Arguments IQR q%Q : simpl never.
-
-Lemma plus_IQR : forall n m:Q, IQR (n + m) == IQR n + IQR m.
-Proof.
- intros. destruct n,m; unfold Qplus,IQR; simpl.
- rewrite plus_IZR. repeat rewrite mult_IZR.
- setoid_replace ((/ IPR (Qden * Qden0)) (inr (IPR_pos (Qden * Qden0))))
- with ((/ IPR Qden) (inr (IPR_pos Qden))
- * (/ IPR Qden0) (inr (IPR_pos Qden0))).
- rewrite Rmult_plus_distr_r.
- repeat rewrite Rmult_assoc. rewrite <- (Rmult_assoc (IZR (Z.pos Qden))).
- rewrite Rinv_r. rewrite Rmult_1_l.
- rewrite (Rmult_comm ((/IPR Qden) (inr (IPR_pos Qden)))).
- rewrite <- (Rmult_assoc (IZR (Z.pos Qden0))).
- rewrite Rinv_r. rewrite Rmult_1_l. reflexivity. unfold IZR.
- right. apply IPR_pos.
- right. apply IPR_pos.
- rewrite <- (Rinv_mult_distr
- _ _ _ _ (inr (Rmult_lt_0_compat _ _ (IPR_pos _) (IPR_pos _)))).
- apply Rinv_eq_compat. apply mult_IPR.
-Qed.
-
-Lemma IQR_pos : forall q:Q, Qlt 0 q -> 0 < IQR q.
-Proof.
- intros. destruct q; unfold IQR.
- apply Rmult_lt_0_compat. apply (IZR_lt 0).
- unfold Qlt in H; simpl in H.
- rewrite Z.mul_1_r in H. apply H.
- apply Rinv_0_lt_compat.
-Qed.
-
-Lemma opp_IQR : forall q:Q, IQR (- q) == - IQR q.
-Proof.
- intros [a b]; unfold IQR; simpl.
- rewrite Ropp_mult_distr_l.
- rewrite opp_IZR. reflexivity.
-Qed.
-
-Lemma lt_IQR : forall n m:Q, IQR n < IQR m -> (n < m)%Q.
-Proof.
- intros. destruct n,m; unfold IQR in H.
- unfold Qlt; simpl. apply (Rmult_lt_compat_r (IPR Qden)) in H.
- rewrite Rmult_assoc in H. rewrite Rinv_l in H.
- rewrite Rmult_1_r in H. rewrite (Rmult_comm (IZR Qnum0)) in H.
- apply (Rmult_lt_compat_l (IPR Qden0)) in H.
- do 2 rewrite <- Rmult_assoc in H. rewrite Rinv_r in H.
- rewrite Rmult_1_l in H.
- rewrite (Rmult_comm (IZR Qnum0)) in H.
- do 2 rewrite <- mult_IPR_IZR in H. apply lt_IZR in H.
- rewrite Z.mul_comm. rewrite (Z.mul_comm Qnum0).
- apply H.
- right. rewrite <- INR_IPR. apply (lt_INR 0). apply Pos2Nat.is_pos.
- rewrite <- INR_IPR. apply (lt_INR 0). apply Pos2Nat.is_pos.
- apply IPR_pos.
-Qed.
-
-Lemma IQR_lt : forall n m:Q, Qlt n m -> IQR n < IQR m.
-Proof.
- intros. apply (Rplus_lt_reg_r (-IQR n)).
- rewrite Rplus_opp_r. rewrite <- opp_IQR. rewrite <- plus_IQR.
- apply IQR_pos. apply (Qplus_lt_l _ _ n).
- ring_simplify. apply H.
-Qed.
-
-Lemma IQR_nonneg : forall q:Q, Qle 0 q -> 0 <= (IQR q).
-Proof.
- intros [a b] H. unfold IQR;simpl.
- apply (Rle_trans _ (IZR a * 0)). rewrite Rmult_0_r. apply Rle_refl.
- apply Rmult_le_compat_l.
- apply (IZR_le 0 a). unfold Qle in H; simpl in H.
- rewrite Z.mul_1_r in H. apply H.
- unfold Rle. apply Rlt_asym. apply Rinv_0_lt_compat.
-Qed.
-
-Lemma IQR_le : forall n m:Q, Qle n m -> IQR n <= IQR m.
-Proof.
- intros. apply (Rplus_le_reg_r (-IQR n)).
- rewrite Rplus_opp_r. rewrite <- opp_IQR. rewrite <- plus_IQR.
- apply IQR_nonneg. apply (Qplus_le_l _ _ n).
- ring_simplify. apply H.
-Qed.
-
-Add Parametric Morphism : IQR
- with signature Qeq ==> Req
- as IQR_morph.
-Proof.
- intros. destruct x,y; unfold IQR; simpl.
- unfold Qeq in H; simpl in H.
- apply (Rmult_eq_reg_r (IZR (Z.pos Qden))).
- rewrite Rmult_assoc. rewrite Rinv_l. rewrite Rmult_1_r.
- rewrite (Rmult_comm (IZR Qnum0)).
- apply (Rmult_eq_reg_l (IZR (Z.pos Qden0))).
- rewrite <- Rmult_assoc. rewrite <- Rmult_assoc. rewrite Rinv_r.
- rewrite Rmult_1_l.
- repeat rewrite <- mult_IZR.
- rewrite <- H. rewrite Zmult_comm. reflexivity.
- right. apply IPR_pos.
- right. apply (IZR_lt 0). apply Pos2Z.is_pos.
- right. apply IPR_pos.
-Qed.
-
-Instance IQR_morph_T
- : CMorphisms.Proper
- (CMorphisms.respectful Qeq Req) IQR.
-Proof.
- intros x y H. destruct x,y; unfold IQR.
- unfold Qeq in H; simpl in H.
- apply (Rmult_eq_reg_r (IZR (Z.pos Qden))).
- 2: right; apply IPR_pos.
- rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
- rewrite (Rmult_comm (IZR Qnum0)).
- apply (Rmult_eq_reg_l (IZR (Z.pos Qden0))).
- 2: right; apply IPR_pos.
- rewrite <- Rmult_assoc, <- Rmult_assoc, Rinv_r.
- rewrite Rmult_1_l.
- repeat rewrite <- mult_IZR.
- rewrite <- H. rewrite Zmult_comm. reflexivity.
- right; apply IPR_pos.
-Qed.
-
-Fixpoint Rfloor_pos (a : R) (n : nat) { struct n }
- : 0 < a
- -> a < INR n
- -> { p : nat & INR p < a < INR p + 2 }.
-Proof.
- (* Decreasing loop on n, until it is the first integer above a. *)
- intros H H0. destruct n.
- - exfalso. apply (Rlt_asym 0 a); assumption.
- - destruct n as [|p] eqn:des.
- + (* n = 1 *) exists O. split.
- apply H. rewrite Rplus_0_l. apply (Rlt_trans a (1+0)).
- rewrite Rplus_comm, Rplus_0_l. apply H0.
- apply Rplus_le_lt_compat.
- apply Rle_refl. apply Rlt_0_1.
- + (* n > 1 *)
- destruct (linear_order_T (INR p) a (INR (S p))).
- * rewrite <- Rplus_0_l, S_INR, Rplus_comm. apply Rplus_lt_compat_l.
- apply Rlt_0_1.
- * exists p. split. exact r.
- rewrite S_INR, S_INR, Rplus_assoc in H0. exact H0.
- * apply (Rfloor_pos a n H). rewrite des. apply r.
-Qed.
-
-Definition Rfloor (a : R)
- : { p : Z & IZR p < a < IZR p + 2 }.
-Proof.
- destruct (linear_order_T 0 a 1 Rlt_0_1).
- - destruct (Rup_nat a). destruct (Rfloor_pos a x r r0).
- exists (Z.of_nat x0). split; rewrite <- INR_IZR_INZ; apply p.
- - apply (Rplus_lt_compat_l (-a)) in r.
- rewrite Rplus_comm, Rplus_opp_r, Rplus_comm in r.
- destruct (Rup_nat (1-a)).
- destruct (Rfloor_pos (1-a) x r r0).
- exists (-(Z.of_nat x0 + 1))%Z. split; rewrite opp_IZR, plus_IZR.
- + rewrite <- (Ropp_involutive a). apply Ropp_gt_lt_contravar.
- destruct p as [_ a0]. apply (Rplus_lt_reg_r 1).
- rewrite Rplus_comm, Rplus_assoc. rewrite <- INR_IZR_INZ. apply a0.
- + destruct p as [a0 _]. apply (Rplus_lt_compat_l a) in a0.
- unfold Rminus in a0.
- rewrite <- (Rplus_comm (1+-a)), Rplus_assoc, Rplus_opp_l, Rplus_0_r in a0.
- rewrite <- INR_IZR_INZ.
- apply (Rplus_lt_reg_r (INR x0)). unfold IZR, IPR, IPR_2.
- ring_simplify. exact a0.
-Qed.
-
-(* A point in an archimedean field is the limit of a
- sequence of rational numbers (n maps to the q between
- a and a+1/n). This is how real numbers compute,
- and they are measured by exact rational numbers. *)
-Definition RQ_dense (a b : R)
- : a < b -> { q : Q & a < IQR q < b }.
-Proof.
- intros H0.
- assert (0 < b - a) as epsPos.
- { apply (Rplus_lt_compat_r (-a)) in H0.
- rewrite Rplus_opp_r in H0. apply H0. }
- pose proof (Rup_nat ((/(b-a)) (inr epsPos)))
- as [n maj].
- destruct n as [|k].
- - exfalso.
- apply (Rmult_lt_compat_l (b-a)) in maj. 2: apply epsPos.
- rewrite Rmult_0_r in maj. rewrite Rinv_r in maj.
- apply (Rlt_asym 0 1). apply Rlt_0_1. apply maj.
- right. apply epsPos.
- - (* 0 < n *)
- pose (Pos.of_nat (S k)) as n.
- destruct (Rfloor (IZR (2 * Z.pos n) * b)) as [p maj2].
- exists (p # (2*n))%Q. split.
- + apply (Rlt_trans a (b - IQR (1 # n))).
- apply (Rplus_lt_reg_r (IQR (1#n))).
- unfold Rminus,CRminus. rewrite Rplus_assoc. rewrite Rplus_opp_l.
- rewrite Rplus_0_r. apply (Rplus_lt_reg_l (-a)).
- rewrite <- Rplus_assoc, Rplus_opp_l, Rplus_0_l.
- rewrite Rplus_comm. unfold IQR.
- rewrite Rmult_1_l. apply (Rmult_lt_reg_l (IPR n)).
- apply IPR_pos. rewrite Rinv_r.
- apply (Rmult_lt_compat_l (b-a)) in maj.
- rewrite Rinv_r, Rmult_comm in maj.
- rewrite <- INR_IPR. unfold n. rewrite Nat2Pos.id.
- apply maj. discriminate. right. exact epsPos. exact epsPos.
- right. apply IPR_pos.
- apply (Rplus_lt_reg_r (IQR (1 # n))).
- unfold Rminus,CRminus. rewrite Rplus_assoc, Rplus_opp_l.
- rewrite Rplus_0_r. rewrite <- plus_IQR.
- destruct maj2 as [_ maj2].
- setoid_replace ((p # 2 * n) + (1 # n))%Q
- with ((p + 2 # 2 * n))%Q. unfold IQR.
- apply (Rmult_lt_reg_r (IZR (Z.pos (2 * n)))).
- apply (IZR_lt 0). reflexivity. rewrite Rmult_assoc.
- rewrite Rinv_l. rewrite Rmult_1_r. rewrite Rmult_comm.
- rewrite plus_IZR. apply maj2.
- setoid_replace (1#n)%Q with (2#2*n)%Q. 2: reflexivity.
- apply Qinv_plus_distr.
- + destruct maj2 as [maj2 _]. unfold IQR.
- apply (Rmult_lt_reg_r (IZR (Z.pos (2 * n)))).
- apply (IZR_lt 0). apply Pos2Z.is_pos. rewrite Rmult_assoc, Rinv_l.
- rewrite Rmult_1_r, Rmult_comm. apply maj2.
-Qed.
-
-Definition RQ_limit : forall (x : R) (n:nat),
- { q:Q & x < IQR q < x + IQR (1 # Pos.of_nat n) }.
-Proof.
- intros x n. apply (RQ_dense x (x + IQR (1 # Pos.of_nat n))).
- rewrite <- (Rplus_0_r x). rewrite Rplus_assoc.
- apply Rplus_lt_compat_l. rewrite Rplus_0_l. apply IQR_pos.
- reflexivity.
-Qed.
-
-(* Rlt is decided by the LPO in Type,
- which is a non-constructive oracle. *)
-Lemma Rlt_lpo_dec : forall x y : R,
- (forall (P : nat -> Prop), (forall n, {P n} + {~P n})
- -> {n | ~P n} + {forall n, P n})
- -> (x < y) + (y <= x).
-Proof.
- intros x y lpo.
- pose (fun n => let (l,_) := RQ_limit x n in l) as xn.
- pose (fun n => let (l,_) := RQ_limit y n in l) as yn.
- destruct (lpo (fun n:nat => Qle (yn n - xn n) (1 # Pos.of_nat n))).
- - intro n. destruct (Qlt_le_dec (1 # Pos.of_nat n) (yn n - xn n)).
- right. apply Qlt_not_le. exact q. left. exact q.
- - left. destruct s as [n nmaj]. unfold xn,yn in nmaj.
- destruct (RQ_limit x n), (RQ_limit y n); unfold proj1_sig in nmaj.
- apply Qnot_le_lt in nmaj.
- apply (Rlt_le_trans x (IQR x0)). apply p.
- apply (Rle_trans _ (IQR (x1 - (1# Pos.of_nat n)))).
- apply IQR_le. apply (Qplus_le_l _ _ ((1#Pos.of_nat n) - x0)).
- ring_simplify. ring_simplify in nmaj. rewrite Qplus_comm.
- apply Qlt_le_weak. exact nmaj.
- unfold Qminus. rewrite plus_IQR,opp_IQR.
- apply (Rplus_le_reg_r (IQR (1#Pos.of_nat n))).
- ring_simplify. unfold Rle. apply Rlt_asym. rewrite Rplus_comm. apply p0.
- - right. intro abs.
- pose ((y - x) * IQR (1#2)) as eps.
- assert (0 < eps) as epsPos.
- { apply Rmult_lt_0_compat. apply Rgt_minus. exact abs.
- apply IQR_pos. reflexivity. }
- destruct (Rup_nat ((/eps) (inr epsPos))) as [n nmaj].
- specialize (q (S n)). unfold xn, yn in q.
- destruct (RQ_limit x (S n)) as [a amaj], (RQ_limit y (S n)) as [b bmaj];
- unfold proj1_sig in q.
- assert (IQR (1 # Pos.of_nat (S n)) < eps).
- { unfold IQR. rewrite Rmult_1_l.
- apply (Rmult_lt_reg_l (IPR (Pos.of_nat (S n)))). apply IPR_pos.
- rewrite Rinv_r, <- INR_IPR, Nat2Pos.id. 2: discriminate.
- apply (Rlt_trans _ _ (INR (S n))) in nmaj.
- apply (Rmult_lt_compat_l eps) in nmaj.
- rewrite Rinv_r, Rmult_comm in nmaj. exact nmaj.
- right. exact epsPos. exact epsPos. apply lt_INR. apply le_n_S, le_refl.
- right. apply IPR_pos. }
- unfold eps in H. apply (Rlt_asym y (IQR b)).
- + apply bmaj.
- + apply (Rlt_le_trans _ (IQR a + (y - x) * IQR (1 # 2))).
- apply IQR_le in q.
- apply (Rle_lt_trans _ _ _ q) in H.
- apply (Rplus_lt_reg_l (-IQR a)).
- rewrite <- Rplus_assoc, Rplus_opp_l, Rplus_0_l, Rplus_comm,
- <- opp_IQR, <- plus_IQR. exact H.
- apply (Rplus_lt_compat_l x) in H.
- destruct amaj. apply (Rlt_trans _ _ _ r0) in H.
- apply (Rplus_lt_compat_r ((y - x) * IQR (1 # 2))) in H.
- unfold Rle. apply Rlt_asym.
- setoid_replace (x + (y - x) * IQR (1 # 2) + (y - x) * IQR (1 # 2)) with y in H.
- exact H.
- rewrite Rplus_assoc, <- Rmult_plus_distr_r.
- setoid_replace (y - x + (y - x)) with ((y-x)*2).
- unfold IQR. rewrite Rmult_1_l, Rmult_assoc, Rinv_r. ring.
- right. apply (IZR_lt 0). reflexivity.
- unfold IZR, IPR, IPR_2. ring.
-Qed.
-
-Lemma Rlt_lpo_floor : forall x : R,
- (forall (P : nat -> Prop), (forall n, {P n} + {~P n})
- -> {n | ~P n} + {forall n, P n})
- -> { p : Z & IZR p <= x < IZR p + 1 }.
-Proof.
- intros x lpo. destruct (Rfloor x) as [n [H H0]].
- destruct (Rlt_lpo_dec x (IZR n + 1) lpo).
- - exists n. split. unfold Rle. apply Rlt_asym. exact H. exact r.
- - exists (n+1)%Z. split. rewrite plus_IZR. exact r.
- rewrite plus_IZR, Rplus_assoc. exact H0.
-Qed.
-
-
-(*********)
-Lemma Rmult_le_pos : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 * r2.
-Proof.
- intros x y H H0; rewrite <- (Rmult_0_l x); rewrite <- (Rmult_comm x);
- apply (Rmult_le_compat_l x 0 y H H0).
-Qed.
-
-Lemma Rinv_le_contravar :
- forall x y (xpos : 0 < x) (ynz : y # 0),
- x <= y -> (/ y) ynz <= (/ x) (inr xpos).
-Proof.
- intros. intro abs. apply (Rmult_lt_compat_l x) in abs.
- 2: apply xpos. rewrite Rinv_r in abs.
- apply (Rmult_lt_compat_r y) in abs.
- rewrite Rmult_assoc in abs. rewrite Rinv_l in abs.
- rewrite Rmult_1_r in abs. rewrite Rmult_1_l in abs. contradiction.
- exact (Rlt_le_trans _ x _ xpos H).
- right. exact xpos.
-Qed.
-
-Lemma Rle_Rinv : forall x y (xpos : 0 < x) (ypos : 0 < y),
- x <= y -> (/ y) (inr ypos) <= (/ x) (inr xpos).
-Proof.
- intros.
- apply Rinv_le_contravar with (1 := H).
-Qed.
-
-Lemma Ropp_div : forall x y (ynz : y # 0),
- -x * (/y) ynz == - (x * (/ y) ynz).
-Proof.
- intros; ring.
-Qed.
-
-Lemma double : forall r1, 2 * r1 == r1 + r1.
-Proof.
- intros. rewrite (Rmult_plus_distr_r 1 1 r1), Rmult_1_l. reflexivity.
-Qed.
-
-Lemma Rlt_0_2 : 0 < 2.
-Proof.
- apply (Rlt_trans 0 (0+1)). rewrite Rplus_0_l. exact Rlt_0_1.
- apply Rplus_lt_le_compat. exact Rlt_0_1. apply Rle_refl.
-Qed.
-
-Lemma double_var : forall r1, r1 == r1 * (/ 2) (inr Rlt_0_2)
- + r1 * (/ 2) (inr Rlt_0_2).
-Proof.
- intro; rewrite <- double; rewrite <- Rmult_assoc;
- symmetry ; apply Rinv_r_simpl_m.
-Qed.
-
-(* IZR : Z -> R is a ring morphism *)
-Lemma R_rm : ring_morph
- 0 1 Rplus Rmult Rminus Ropp Req
- 0%Z 1%Z Zplus Zmult Zminus Z.opp Zeq_bool IZR.
-Proof.
-constructor ; try easy.
-exact plus_IZR.
-exact minus_IZR.
-exact mult_IZR.
-exact opp_IZR.
-intros x y H.
-replace y with x. reflexivity.
-now apply Zeq_bool_eq.
-Qed.
-
-Lemma Zeq_bool_IZR x y :
- IZR x == IZR y -> Zeq_bool x y = true.
-Proof.
-intros H.
-apply Zeq_is_eq_bool.
-now apply eq_IZR.
-Qed.
-
-
-(*********************************************************)
-(** ** Other rules about < and <= *)
-(*********************************************************)
-
-Lemma Rmult_ge_0_gt_0_lt_compat :
- forall r1 r2 r3 r4,
- r3 >= 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
-Proof.
- intros. apply (Rle_lt_trans _ (r2 * r3)).
- apply Rmult_le_compat_r. apply H. unfold Rle. apply Rlt_asym. apply H1.
- apply Rmult_lt_compat_l. apply H0. apply H2.
-Qed.
-
-Lemma le_epsilon :
- forall r1 r2, (forall eps, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2.
-Proof.
- intros x y H. intro abs.
- assert (0 < (x - y) * (/ 2) (inr Rlt_0_2)).
- { apply (Rplus_lt_compat_r (-y)) in abs. rewrite Rplus_opp_r in abs.
- apply Rmult_lt_0_compat. exact abs.
- apply Rinv_0_lt_compat. }
- specialize (H ((x - y) * (/ 2) (inr Rlt_0_2)) H0).
- apply (Rmult_le_compat_l 2) in H.
- rewrite Rmult_plus_distr_l in H.
- apply (Rplus_le_compat_l (-x)) in H.
- rewrite (Rmult_comm (x-y)), <- Rmult_assoc, Rinv_r, Rmult_1_l,
- (Rmult_plus_distr_r 1 1), (Rmult_plus_distr_r 1 1)
- in H.
- ring_simplify in H; contradiction.
- right. apply Rlt_0_2. unfold Rle. apply Rlt_asym. apply Rlt_0_2.
-Qed.
-
-(**********)
-Lemma Rdiv_lt_0_compat : forall a b (bpos : 0 < b),
- 0 < a -> 0 < a * (/b) (inr bpos).
-Proof.
-intros; apply Rmult_lt_0_compat;[|apply Rinv_0_lt_compat]; assumption.
-Qed.
-
-Lemma Rdiv_plus_distr : forall a b c (cnz : c # 0),
- (a + b)* (/c) cnz == a* (/c) cnz + b* (/c) cnz.
-Proof.
- intros. apply Rmult_plus_distr_r.
-Qed.
-
-Lemma Rdiv_minus_distr : forall a b c (cnz : c # 0),
- (a - b)* (/c) cnz == a* (/c) cnz - b* (/c) cnz.
-Proof.
- intros; unfold Rminus,CRminus; rewrite Rmult_plus_distr_r.
- apply Rplus_morph. reflexivity.
- rewrite Ropp_mult_distr_l. reflexivity.
-Qed.
-
-
-(*********************************************************)
-(** * Definitions of new types *)
-(*********************************************************)
-
-Record nonnegreal : Type := mknonnegreal
- {nonneg :> R; cond_nonneg : 0 <= nonneg}.
-
-Record posreal : Type := mkposreal {pos :> R; cond_pos : 0 < pos}.
-
-Record nonposreal : Type := mknonposreal
- {nonpos :> R; cond_nonpos : nonpos <= 0}.
-
-Record negreal : Type := mknegreal {neg :> R; cond_neg : neg < 0}.
-
-Record nonzeroreal : Type := mknonzeroreal
- {nonzero :> R; cond_nonzero : nonzero <> 0}.
diff --git a/theories/Reals/ConstructiveRcomplete.v b/theories/Reals/ConstructiveRcomplete.v
index 0a515672f2..b575c17961 100644
--- a/theories/Reals/ConstructiveRcomplete.v
+++ b/theories/Reals/ConstructiveRcomplete.v
@@ -11,6 +11,7 @@
Require Import QArith_base.
Require Import Qabs.
+Require Import ConstructiveReals.
Require Import ConstructiveCauchyRealsMult.
Require Import Logic.ConstructiveEpsilon.
@@ -347,3 +348,35 @@ Proof.
apply Qplus_le_r. discriminate.
rewrite Qinv_plus_distr. reflexivity.
Qed.
+
+Definition CRealImplem : ConstructiveReals.
+Proof.
+ assert (isLinearOrder CReal CRealLt) as lin.
+ { repeat split. exact CRealLt_asym.
+ exact CReal_lt_trans.
+ intros. destruct (CRealLt_dec x z y H).
+ left. exact c. right. exact c. }
+ apply (Build_ConstructiveReals
+ CReal CRealLt lin CRealLtProp
+ CRealLtEpsilon CRealLtForget CRealLtDisjunctEpsilon
+ (inject_Q 0) (inject_Q 1)
+ CReal_plus CReal_opp CReal_mult
+ CReal_isRing CReal_isRingExt CRealLt_0_1
+ CReal_plus_lt_compat_l CReal_plus_lt_reg_l
+ CReal_mult_lt_0_compat
+ CReal_inv CReal_inv_l CReal_inv_0_lt_compat
+ inject_Q inject_Q_plus inject_Q_mult
+ inject_Q_one inject_Q_lt lt_inject_Q
+ CRealQ_dense Rup_pos).
+ - intros. destruct (Rcauchy_complete xn) as [l cv].
+ intro n. destruct (H n). exists x. intros.
+ specialize (a i j H0 H1) as [a b]. split. 2: exact b.
+ rewrite <- opp_inject_Q.
+ setoid_replace (-(1#n))%Q with (-1#n)%Q. exact a. reflexivity.
+ exists l. intros p. destruct (cv p).
+ exists x. intros. specialize (a i H0). split. 2: apply a.
+ unfold orderLe.
+ intro abs. setoid_replace (-1#p)%Q with (-(1#p))%Q in abs.
+ rewrite opp_inject_Q in abs. destruct a. contradiction.
+ reflexivity.
+Defined.
diff --git a/theories/Reals/ConstructiveRealsMorphisms.v b/theories/Reals/ConstructiveRealsMorphisms.v
index 0d3027d475..7954e9a96c 100644
--- a/theories/Reals/ConstructiveRealsMorphisms.v
+++ b/theories/Reals/ConstructiveRealsMorphisms.v
@@ -29,7 +29,7 @@ Require Import QArith.
Require Import Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveCauchyRealsMult.
-Require Import ConstructiveRIneq.
+Require Import ConstructiveRcomplete.
Record ConstructiveRealsMorphism (R1 R2 : ConstructiveReals) : Set :=
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v
index 3b108b485a..7813c7b975 100644
--- a/theories/Reals/RIneq.v
+++ b/theories/Reals/RIneq.v
@@ -13,7 +13,8 @@
(** * Basic lemmas for the classical real numbers *)
(*********************************************************)
-Require Import ConstructiveRIneq.
+Require Import ConstructiveCauchyReals.
+Require Import ConstructiveCauchyRealsMult.
Require Export Raxioms.
Require Import Rpow_def.
Require Import Zpower.
@@ -457,11 +458,13 @@ Qed.
Lemma Rplus_eq_0_l :
forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0.
Proof.
- intros. apply Rquot1. rewrite Rrepr_0.
- apply (Rplus_eq_0_l (Rrepr r1) (Rrepr r2)).
- rewrite Rrepr_le, Rrepr_0 in H. exact H.
- rewrite Rrepr_le, Rrepr_0 in H0. exact H0.
- rewrite <- Rrepr_plus, H1, Rrepr_0. reflexivity.
+ intros a b H [H0| H0] H1; auto with real.
+ absurd (0 < a + b).
+ rewrite H1; auto with real.
+ apply Rle_lt_trans with (a + 0).
+ rewrite Rplus_0_r; assumption.
+ auto using Rplus_lt_compat_l with real.
+ rewrite <- H0, Rplus_0_r in H1; assumption.
Qed.
Lemma Rplus_eq_R0 :
@@ -541,9 +544,10 @@ Qed.
(**********)
Lemma Rmult_eq_reg_l : forall r r1 r2, r * r1 = r * r2 -> r <> 0 -> r1 = r2.
Proof.
- intros. apply Rquot1. apply (Rmult_eq_reg_l (Rrepr r)).
- rewrite <- Rrepr_mult, <- Rrepr_mult, H. reflexivity.
+ intros. apply Rquot1. apply (CReal_mult_eq_reg_l (Rrepr r)).
apply Rrepr_appart in H0. rewrite Rrepr_0 in H0. exact H0.
+ apply Rrepr_appart in H0.
+ rewrite <- Rrepr_mult, <- Rrepr_mult, H. reflexivity.
Qed.
Lemma Rmult_eq_reg_r : forall r r1 r2, r1 * r = r2 * r -> r <> 0 -> r1 = r2.
@@ -996,16 +1000,16 @@ Qed.
Lemma Rplus_lt_reg_l : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
Proof.
- intros. rewrite Rlt_def. apply Rlt_forget. apply (Rplus_lt_reg_l (Rrepr r)).
+ intros. rewrite Rlt_def. apply CRealLtForget. apply (CReal_plus_lt_reg_l (Rrepr r)).
rewrite <- Rrepr_plus, <- Rrepr_plus.
- rewrite Rlt_def in H. apply Rlt_epsilon. exact H.
+ rewrite Rlt_def in H. apply CRealLtEpsilon. exact H.
Qed.
Lemma Rplus_lt_reg_r : forall r r1 r2, r1 + r < r2 + r -> r1 < r2.
Proof.
- intros. rewrite Rlt_def. apply Rlt_forget. apply (Rplus_lt_reg_r (Rrepr r)).
+ intros. rewrite Rlt_def. apply CRealLtForget. apply (CReal_plus_lt_reg_r (Rrepr r)).
rewrite <- Rrepr_plus, <- Rrepr_plus. rewrite Rlt_def in H.
- apply Rlt_epsilon. exact H.
+ apply CRealLtEpsilon. exact H.
Qed.
Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
@@ -1076,18 +1080,18 @@ Qed.
Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
Proof.
intros. rewrite Rlt_def. rewrite Rrepr_opp, Rrepr_opp.
- apply Rlt_forget.
- apply Ropp_gt_lt_contravar. unfold Rgt in H.
- rewrite Rlt_def in H. apply Rlt_epsilon. exact H.
+ apply CRealLtForget.
+ apply CReal_opp_gt_lt_contravar. unfold Rgt in H.
+ rewrite Rlt_def in H. apply CRealLtEpsilon. exact H.
Qed.
Hint Resolve Ropp_gt_lt_contravar : core.
Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2.
Proof.
intros. unfold Rgt. rewrite Rlt_def. rewrite Rrepr_opp, Rrepr_opp.
- apply Rlt_forget.
- apply Ropp_lt_gt_contravar. rewrite Rlt_def in H.
- apply Rlt_epsilon. exact H.
+ apply CRealLtForget.
+ apply CReal_opp_gt_lt_contravar. rewrite Rlt_def in H.
+ apply CRealLtEpsilon. exact H.
Qed.
Hint Resolve Ropp_lt_gt_contravar: real.
@@ -1239,10 +1243,11 @@ Lemma Rmult_le_compat :
forall r1 r2 r3 r4,
0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
Proof.
- intros. rewrite Rrepr_le, Rrepr_mult, Rrepr_mult.
- apply Rmult_le_compat. rewrite <- Rrepr_0, <- Rrepr_le. exact H.
- rewrite <- Rrepr_0, <- Rrepr_le. exact H0.
- rewrite <- Rrepr_le. exact H1. rewrite <- Rrepr_le. exact H2.
+ intros x y z t H' H'0 H'1 H'2.
+ apply Rle_trans with (r2 := x * t); auto with real.
+ repeat rewrite (fun x => Rmult_comm x t).
+ apply Rmult_le_compat_l; auto.
+ apply Rle_trans with z; auto.
Qed.
Hint Resolve Rmult_le_compat: real.
@@ -1307,18 +1312,20 @@ Qed.
Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof.
- intros. rewrite Rlt_def in H,H0. rewrite Rlt_def. apply Rlt_forget.
- apply (Rmult_lt_reg_l (Rrepr r)).
- rewrite <- Rrepr_0. apply Rlt_epsilon. exact H.
- rewrite <- Rrepr_mult, <- Rrepr_mult. apply Rlt_epsilon. exact H0.
+ intros z x y H H0.
+ case (Rtotal_order x y); intros Eq0; auto; elim Eq0; clear Eq0; intros Eq0.
+ rewrite Eq0 in H0; exfalso; apply (Rlt_irrefl (z * y)); auto.
+ generalize (Rmult_lt_compat_l z y x H Eq0); intro; exfalso;
+ generalize (Rlt_trans (z * x) (z * y) (z * x) H0 H1);
+ intro; apply (Rlt_irrefl (z * x)); auto.
Qed.
Lemma Rmult_lt_reg_r : forall r r1 r2 : R, 0 < r -> r1 * r < r2 * r -> r1 < r2.
Proof.
- intros. rewrite Rlt_def. rewrite Rlt_def in H, H0.
- apply Rlt_forget. apply (Rmult_lt_reg_r (Rrepr r)).
- rewrite <- Rrepr_0. apply Rlt_epsilon. exact H.
- rewrite <- Rrepr_mult, <- Rrepr_mult. apply Rlt_epsilon. exact H0.
+ intros.
+ apply Rmult_lt_reg_l with r.
+ exact H.
+ now rewrite 2!(Rmult_comm r).
Qed.
Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
@@ -1326,10 +1333,14 @@ Proof. eauto using Rmult_lt_reg_l with rorders. Qed.
Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2.
Proof.
- intros. rewrite Rrepr_le. rewrite Rlt_def in H. apply (Rmult_le_reg_l (Rrepr r)).
- rewrite <- Rrepr_0. apply Rlt_epsilon. exact H.
- rewrite <- Rrepr_mult, <- Rrepr_mult.
- rewrite <- Rrepr_le. exact H0.
+ intros z x y H H0; case H0; auto with real.
+ intros H1; apply Rlt_le.
+ apply Rmult_lt_reg_l with (r := z); auto.
+ intros H1; replace x with (/ z * (z * x)); auto with real.
+ replace y with (/ z * (z * y)).
+ rewrite H1; auto with real.
+ rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
+ rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
Qed.
Lemma Rmult_le_reg_r : forall r r1 r2, 0 < r -> r1 * r <= r2 * r -> r1 <= r2.
@@ -1574,9 +1585,11 @@ Qed.
(**********)
Lemma plus_INR : forall n m:nat, INR (n + m) = INR n + INR m.
Proof.
- intros. apply Rquot1.
- rewrite Rrepr_INR, Rrepr_plus, plus_INR,
- <- Rrepr_INR, <- Rrepr_INR. reflexivity.
+ intros n m; induction n as [| n Hrecn].
+ simpl; auto with real.
+ replace (S n + m)%nat with (S (n + m)); auto with arith.
+ repeat rewrite S_INR.
+ rewrite Hrecn; ring.
Qed.
Hint Resolve plus_INR: real.
@@ -1645,8 +1658,16 @@ Hint Resolve pos_INR: real.
Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat.
Proof.
- intros. apply INR_lt. rewrite Rlt_def in H.
- rewrite Rrepr_INR, Rrepr_INR in H. apply Rlt_epsilon. exact H.
+ intros n m. revert n.
+ induction m ; intros n H.
+ - elim (Rlt_irrefl 0).
+ apply Rle_lt_trans with (2 := H).
+ apply pos_INR.
+ - destruct n as [|n].
+ apply Nat.lt_0_succ.
+ apply lt_n_S, IHm.
+ rewrite 2!S_INR in H.
+ apply Rplus_lt_reg_r with (1 := H).
Qed.
Hint Resolve INR_lt: real.
@@ -1680,8 +1701,11 @@ Hint Resolve not_0_INR: real.
Lemma not_INR : forall n m:nat, n <> m -> INR n <> INR m.
Proof.
- intros. apply Rappart_repr. rewrite Rrepr_INR, Rrepr_INR.
- apply not_INR. exact H.
+ intros n m H; case (le_or_lt n m); intros H1.
+ case (le_lt_or_eq _ _ H1); intros H2.
+ apply Rlt_dichotomy_converse; auto with real.
+ exfalso; auto.
+ apply not_eq_sym; apply Rlt_dichotomy_converse; auto with real.
Qed.
Hint Resolve not_INR: real.
@@ -1721,8 +1745,17 @@ Qed.
Lemma INR_IPR : forall p, INR (Pos.to_nat p) = IPR p.
Proof.
- intros. apply Rquot1. rewrite Rrepr_INR, Rrepr_IPR.
- apply INR_IPR.
+ assert (H: forall p, 2 * INR (Pos.to_nat p) = IPR_2 p).
+ induction p as [p|p|] ; simpl IPR_2.
+ rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- IHp.
+ now rewrite (Rplus_comm (2 * _)).
+ now rewrite Pos2Nat.inj_xO, mult_INR, <- IHp.
+ apply Rmult_1_r.
+ intros [p|p|] ; unfold IPR.
+ rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- H.
+ apply Rplus_comm.
+ now rewrite Pos2Nat.inj_xO, mult_INR, <- H.
+ easy.
Qed.
(**********)
@@ -1737,15 +1770,26 @@ Qed.
Lemma plus_IZR_NEG_POS :
forall p q:positive, IZR (Zpos p + Zneg q) = IZR (Zpos p) + IZR (Zneg q).
Proof.
- intros. apply Rquot1. rewrite Rrepr_plus.
- do 3 rewrite Rrepr_IZR. apply plus_IZR_NEG_POS.
+ intros p q; simpl. rewrite Z.pos_sub_spec.
+ case Pos.compare_spec; intros H; unfold IZR.
+ subst. ring.
+ rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
+ rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
+ ring.
+ rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
+ rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
+ ring.
Qed.
(**********)
Lemma plus_IZR : forall n m:Z, IZR (n + m) = IZR n + IZR m.
Proof.
- intros. apply Rquot1.
- rewrite Rrepr_plus. do 3 rewrite Rrepr_IZR. apply plus_IZR.
+ intro z; destruct z; intro t; destruct t; intros; auto with real.
+ simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add. apply plus_INR.
+ apply plus_IZR_NEG_POS.
+ rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS.
+ simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add, plus_INR.
+ apply Ropp_plus_distr.
Qed.
(**********)
@@ -1755,21 +1799,14 @@ Proof.
unfold IZR; intros m n; rewrite <- 3!INR_IPR, Pos2Nat.inj_mul, mult_INR; ring.
Qed.
-Lemma Rrepr_pow : forall (x : R) (n : nat),
- (ConstructiveRIneq.Req (Rrepr (pow x n))
- (ConstructiveRIneq.pow (Rrepr x) n)).
-Proof.
- intro x. induction n.
- - apply Rrepr_1.
- - simpl. rewrite Rrepr_mult, <- IHn. reflexivity.
-Qed.
-
Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Z.pow z (Z.of_nat n)).
Proof.
- intros. apply Rquot1.
- rewrite Rrepr_IZR, Rrepr_pow.
- rewrite (Rpow_eq_compat _ _ n (Rrepr_IZR z)).
- apply pow_IZR.
+ intros z [|n];simpl;trivial.
+ rewrite Zpower_pos_nat.
+ rewrite SuccNat2Pos.id_succ. unfold Zpower_nat;simpl.
+ rewrite mult_IZR.
+ induction n;simpl;trivial.
+ rewrite mult_IZR;ring[IHn].
Qed.
(**********)
@@ -1803,23 +1840,34 @@ Qed.
(**********)
Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
Proof.
- intros. apply lt_0_IZR. rewrite <- Rrepr_0, <- Rrepr_IZR.
- rewrite Rlt_def in H. apply Rlt_epsilon. exact H.
+ intro z; case z; simpl; intros.
+ elim (Rlt_irrefl _ H).
+ easy.
+ elim (Rlt_not_le _ _ H).
+ unfold IZR.
+ rewrite <- INR_IPR.
+ auto with real.
Qed.
(**********)
Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z.
Proof.
- intros. apply lt_IZR.
- rewrite <- Rrepr_IZR, <- Rrepr_IZR. rewrite Rlt_def in H.
- apply Rlt_epsilon. exact H.
+ intros z1 z2 H; apply Z.lt_0_sub.
+ apply lt_0_IZR.
+ rewrite <- Z_R_minus.
+ exact (Rgt_minus (IZR z2) (IZR z1) H).
Qed.
(**********)
Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z.
Proof.
- intros. apply eq_IZR_R0.
- rewrite <- Rrepr_0, <- Rrepr_IZR, H. reflexivity.
+ intro z; destruct z; simpl; intros; auto with zarith.
+ elim Rgt_not_eq with (2 := H).
+ unfold IZR. rewrite <- INR_IPR.
+ apply lt_0_INR, Pos2Nat.is_pos.
+ elim Rlt_not_eq with (2 := H).
+ unfold IZR. rewrite <- INR_IPR.
+ apply Ropp_lt_gt_0_contravar, lt_0_INR, Pos2Nat.is_pos.
Qed.
(**********)
@@ -1895,21 +1943,26 @@ Hint Extern 0 (IZR _ <> IZR _) => apply IZR_neq, Zeq_bool_neq, eq_refl : real.
Lemma one_IZR_lt1 : forall n:Z, -1 < IZR n < 1 -> n = 0%Z.
Proof.
- intros. apply one_IZR_lt1. do 2 rewrite Rlt_def in H. split.
- rewrite <- Rrepr_IZR, <- Rrepr_1, <- Rrepr_opp.
- apply Rlt_epsilon. apply H.
- rewrite <- Rrepr_IZR, <- Rrepr_1. apply Rlt_epsilon. apply H.
+ intros z [H1 H2].
+ apply Z.le_antisymm.
+ apply Z.lt_succ_r; apply lt_IZR; trivial.
+ change 0%Z with (Z.succ (-1)).
+ apply Z.le_succ_l; apply lt_IZR; trivial.
Qed.
Lemma one_IZR_r_R1 :
forall r (n m:Z), r < IZR n <= r + 1 -> r < IZR m <= r + 1 -> n = m.
Proof.
- intros. rewrite Rlt_def in H, H0. apply (one_IZR_r_R1 (Rrepr r)); split.
- rewrite <- Rrepr_IZR. apply Rlt_epsilon. apply H.
- rewrite <- Rrepr_IZR, <- Rrepr_1, <- Rrepr_plus, <- Rrepr_le.
- apply H. rewrite <- Rrepr_IZR. apply Rlt_epsilon. apply H0.
- rewrite <- Rrepr_IZR, <- Rrepr_1, <- Rrepr_plus, <- Rrepr_le.
- apply H0.
+ intros r z x [H1 H2] [H3 H4].
+ cut ((z - x)%Z = 0%Z); auto with zarith.
+ apply one_IZR_lt1.
+ rewrite <- Z_R_minus; split.
+ replace (-1) with (r - (r + 1)).
+ unfold Rminus; apply Rplus_lt_le_compat; auto with real.
+ ring.
+ replace 1 with (r + 1 - r).
+ unfold Rminus; apply Rplus_le_lt_compat; auto with real.
+ ring.
Qed.
@@ -1942,13 +1995,13 @@ Qed.
Lemma Rinv_le_contravar :
forall x y, 0 < x -> x <= y -> / y <= / x.
Proof.
- intros. apply Rrepr_le. assert (y <> 0).
- intro abs. subst y. apply (Rlt_irrefl 0). exact (Rlt_le_trans 0 x 0 H H0).
- apply Rrepr_appart in H1.
- rewrite Rrepr_0 in H1. rewrite Rlt_def in H. rewrite Rrepr_0 in H.
- apply Rlt_epsilon in H.
- rewrite (Rrepr_inv y H1), (Rrepr_inv x (inr H)).
- apply Rinv_le_contravar. rewrite <- Rrepr_le. exact H0.
+ intros x y H1 [H2|H2].
+ apply Rlt_le.
+ apply Rinv_lt_contravar with (2 := H2).
+ apply Rmult_lt_0_compat with (1 := H1).
+ now apply Rlt_trans with x.
+ rewrite H2.
+ apply Rle_refl.
Qed.
Lemma Rle_Rinv : forall x y:R, 0 < x -> 0 < y -> x <= y -> / y <= / x.
@@ -2012,10 +2065,18 @@ Qed.
Lemma le_epsilon :
forall r1 r2, (forall eps:R, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2.
Proof.
- intros. rewrite Rrepr_le. apply le_epsilon.
- intros. rewrite <- (Rquot2 eps), <- Rrepr_plus.
- rewrite <- Rrepr_le. apply H. rewrite Rlt_def.
- rewrite Rquot2, Rrepr_0. apply Rlt_forget. exact H0.
+ intros x y H.
+ destruct (Rle_or_lt x y) as [H1|H1].
+ exact H1.
+ apply Rplus_le_reg_r with x.
+ replace (y + x) with (2 * (y + (x - y) * / 2)) by field.
+ replace (x + x) with (2 * x) by ring.
+ apply Rmult_le_compat_l.
+ now apply (IZR_le 0 2).
+ apply H.
+ apply Rmult_lt_0_compat.
+ now apply Rgt_minus.
+ apply Rinv_0_lt_compat, Rlt_0_2.
Qed.
(**********)
diff --git a/theories/Reals/Raxioms.v b/theories/Reals/Raxioms.v
index d856d1c7fe..be283fb7cf 100644
--- a/theories/Reals/Raxioms.v
+++ b/theories/Reals/Raxioms.v
@@ -20,10 +20,12 @@
(*********************************************************)
Require Export ZArith_base.
-Require Import ConstructiveRIneq.
+Require Import ClassicalDedekindReals.
+Require Import ConstructiveCauchyReals.
+Require Import ConstructiveCauchyRealsMult.
+Require Import ConstructiveRcomplete.
Require Import ConstructiveRealsLUB.
Require Export Rdefinitions.
-Declare Scope R_scope.
Local Open Scope R_scope.
(*********************************************************)
@@ -34,7 +36,7 @@ Local Open Scope R_scope.
(** ** Addition *)
(*********************************************************)
-Open Scope R_scope_constr.
+Open Scope CReal_scope.
Lemma Rrepr_0 : Rrepr 0 == 0.
Proof.
@@ -58,7 +60,7 @@ Qed.
Lemma Rrepr_minus : forall x y:R, Rrepr (x - y) == Rrepr x - Rrepr y.
Proof.
- intros. unfold Rminus, CRminus.
+ intros. unfold Rminus, CReal_minus.
rewrite Rrepr_plus, Rrepr_opp. reflexivity.
Qed.
@@ -72,10 +74,10 @@ Lemma Rrepr_inv : forall (x:R) (xnz : Rrepr x # 0),
Proof.
intros. rewrite RinvImpl.Rinv_def. destruct (Req_appart_dec x R0).
- exfalso. subst x. destruct xnz.
- rewrite Rrepr_0 in c. exact (Rlt_irrefl 0 c).
- rewrite Rrepr_0 in c. exact (Rlt_irrefl 0 c).
- - rewrite Rquot2. apply (Rmult_eq_reg_l (Rrepr x)). 2: exact xnz.
- rewrite Rmult_comm, (Rmult_comm (Rrepr x)), Rinv_l, Rinv_l.
+ rewrite Rrepr_0 in c. exact (CRealLt_irrefl 0 c).
+ rewrite Rrepr_0 in c. exact (CRealLt_irrefl 0 c).
+ - rewrite Rquot2. apply (CReal_mult_eq_reg_l (Rrepr x)). exact xnz.
+ rewrite CReal_mult_comm, (CReal_mult_comm (Rrepr x)), CReal_inv_l, CReal_inv_l.
reflexivity.
Qed.
@@ -83,12 +85,12 @@ Lemma Rrepr_le : forall x y:R, (x <= y)%R <-> Rrepr x <= Rrepr y.
Proof.
split.
- intros [H|H] abs. rewrite RbaseSymbolsImpl.Rlt_def in H.
- apply Rlt_epsilon in H.
- exact (Rlt_asym (Rrepr x) (Rrepr y) H abs).
- destruct H. exact (Rlt_asym (Rrepr x) (Rrepr x) abs abs).
+ apply CRealLtEpsilon in H.
+ exact (CRealLt_asym (Rrepr x) (Rrepr y) H abs).
+ destruct H. exact (CRealLt_asym (Rrepr x) (Rrepr x) abs abs).
- intros. destruct (total_order_T x y). destruct s.
left. exact r. right. exact e.
- rewrite RbaseSymbolsImpl.Rlt_def in r. apply Rlt_epsilon in r. contradiction.
+ rewrite RbaseSymbolsImpl.Rlt_def in r. apply CRealLtEpsilon in r. contradiction.
Qed.
Lemma Rrepr_appart : forall x y:R,
@@ -96,26 +98,26 @@ Lemma Rrepr_appart : forall x y:R,
Proof.
intros. destruct (total_order_T x y). destruct s.
left. rewrite RbaseSymbolsImpl.Rlt_def in r.
- apply Rlt_epsilon. exact r. contradiction.
+ apply CRealLtEpsilon. exact r. contradiction.
right. rewrite RbaseSymbolsImpl.Rlt_def in r.
- apply Rlt_epsilon. exact r.
+ apply CRealLtEpsilon. exact r.
Qed.
Lemma Rappart_repr : forall x y:R,
Rrepr x # Rrepr y -> (x <> y)%R.
Proof.
intros x y [H|H] abs.
- destruct abs. exact (Rlt_asym (Rrepr x) (Rrepr x) H H).
- destruct abs. exact (Rlt_asym (Rrepr x) (Rrepr x) H H).
+ destruct abs. exact (CRealLt_asym (Rrepr x) (Rrepr x) H H).
+ destruct abs. exact (CRealLt_asym (Rrepr x) (Rrepr x) H H).
Qed.
-Close Scope R_scope_constr.
+Close Scope CReal_scope.
(**********)
Lemma Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1.
Proof.
- intros. apply Rquot1. do 2 rewrite Rrepr_plus. apply Rplus_comm.
+ intros. apply Rquot1. do 2 rewrite Rrepr_plus. apply CReal_plus_comm.
Qed.
Hint Resolve Rplus_comm: real.
@@ -123,7 +125,7 @@ Hint Resolve Rplus_comm: real.
Lemma Rplus_assoc : forall r1 r2 r3:R, r1 + r2 + r3 = r1 + (r2 + r3).
Proof.
intros. apply Rquot1. repeat rewrite Rrepr_plus.
- apply Rplus_assoc.
+ apply CReal_plus_assoc.
Qed.
Hint Resolve Rplus_assoc: real.
@@ -131,7 +133,7 @@ Hint Resolve Rplus_assoc: real.
Lemma Rplus_opp_r : forall r:R, r + - r = 0.
Proof.
intros. apply Rquot1. rewrite Rrepr_plus, Rrepr_opp, Rrepr_0.
- apply Rplus_opp_r.
+ apply CReal_plus_opp_r.
Qed.
Hint Resolve Rplus_opp_r: real.
@@ -139,7 +141,7 @@ Hint Resolve Rplus_opp_r: real.
Lemma Rplus_0_l : forall r:R, 0 + r = r.
Proof.
intros. apply Rquot1. rewrite Rrepr_plus, Rrepr_0.
- apply Rplus_0_l.
+ apply CReal_plus_0_l.
Qed.
Hint Resolve Rplus_0_l: real.
@@ -150,7 +152,7 @@ Hint Resolve Rplus_0_l: real.
(**********)
Lemma Rmult_comm : forall r1 r2:R, r1 * r2 = r2 * r1.
Proof.
- intros. apply Rquot1. do 2 rewrite Rrepr_mult. apply Rmult_comm.
+ intros. apply Rquot1. do 2 rewrite Rrepr_mult. apply CReal_mult_comm.
Qed.
Hint Resolve Rmult_comm: real.
@@ -158,7 +160,7 @@ Hint Resolve Rmult_comm: real.
Lemma Rmult_assoc : forall r1 r2 r3:R, r1 * r2 * r3 = r1 * (r2 * r3).
Proof.
intros. apply Rquot1. repeat rewrite Rrepr_mult.
- apply Rmult_assoc.
+ apply CReal_mult_assoc.
Qed.
Hint Resolve Rmult_assoc: real.
@@ -167,7 +169,7 @@ Lemma Rinv_l : forall r:R, r <> 0 -> / r * r = 1.
Proof.
intros. rewrite RinvImpl.Rinv_def; destruct (Req_appart_dec r R0).
- contradiction.
- - apply Rquot1. rewrite Rrepr_mult, Rquot2, Rrepr_1. apply Rinv_l.
+ - apply Rquot1. rewrite Rrepr_mult, Rquot2, Rrepr_1. apply CReal_inv_l.
Qed.
Hint Resolve Rinv_l: real.
@@ -175,7 +177,7 @@ Hint Resolve Rinv_l: real.
Lemma Rmult_1_l : forall r:R, 1 * r = r.
Proof.
intros. apply Rquot1. rewrite Rrepr_mult, Rrepr_1.
- apply Rmult_1_l.
+ apply CReal_mult_1_l.
Qed.
Hint Resolve Rmult_1_l: real.
@@ -183,17 +185,17 @@ Hint Resolve Rmult_1_l: real.
Lemma R1_neq_R0 : 1 <> 0.
Proof.
intro abs.
- assert (Req (CRone CR) (CRzero CR)).
+ assert (CRealEq 1%CReal 0%CReal).
{ transitivity (Rrepr 1). symmetry.
- replace 1%R with (Rabst (CRone CR)).
+ replace 1%R with (Rabst 1%CReal).
2: unfold IZR,IPR; rewrite RbaseSymbolsImpl.R1_def; reflexivity.
rewrite Rquot2. reflexivity. transitivity (Rrepr 0).
rewrite abs. reflexivity.
- replace 0%R with (Rabst (CRzero CR)).
+ replace 0%R with (Rabst 0%CReal).
2: unfold IZR; rewrite RbaseSymbolsImpl.R0_def; reflexivity.
rewrite Rquot2. reflexivity. }
- pose proof (Rlt_morph (CRzero CR) (CRzero CR) (Req_refl _) (CRone CR) (CRzero CR) H).
- apply (Rlt_irrefl (CRzero CR)). apply H0. apply Rlt_0_1.
+ pose proof (CRealLt_morph 0%CReal 0%CReal (CRealEq_refl _) 1%CReal 0%CReal H).
+ apply (CRealLt_irrefl 0%CReal). apply H0. apply CRealLt_0_1.
Qed.
Hint Resolve R1_neq_R0: real.
@@ -207,7 +209,7 @@ Lemma
Proof.
intros. apply Rquot1.
rewrite Rrepr_mult, Rrepr_plus, Rrepr_plus, Rrepr_mult, Rrepr_mult.
- apply Rmult_plus_distr_l.
+ apply CReal_mult_plus_distr_l.
Qed.
Hint Resolve Rmult_plus_distr_l: real.
@@ -223,35 +225,35 @@ Hint Resolve Rmult_plus_distr_l: real.
Lemma Rlt_asym : forall r1 r2:R, r1 < r2 -> ~ r2 < r1.
Proof.
intros. intro abs. rewrite RbaseSymbolsImpl.Rlt_def in H, abs.
- apply Rlt_epsilon in H. apply Rlt_epsilon in abs.
- apply (Rlt_asym (Rrepr r1) (Rrepr r2)); assumption.
+ apply CRealLtEpsilon in H. apply CRealLtEpsilon in abs.
+ apply (CRealLt_asym (Rrepr r1) (Rrepr r2)); assumption.
Qed.
(**********)
Lemma Rlt_trans : forall r1 r2 r3:R, r1 < r2 -> r2 < r3 -> r1 < r3.
Proof.
intros. rewrite RbaseSymbolsImpl.Rlt_def. rewrite RbaseSymbolsImpl.Rlt_def in H, H0.
- apply Rlt_epsilon in H. apply Rlt_epsilon in H0.
- apply Rlt_forget.
- apply (Rlt_trans (Rrepr r1) (Rrepr r2) (Rrepr r3)); assumption.
+ apply CRealLtEpsilon in H. apply CRealLtEpsilon in H0.
+ apply CRealLtForget.
+ apply (CReal_lt_trans (Rrepr r1) (Rrepr r2) (Rrepr r3)); assumption.
Qed.
(**********)
Lemma Rplus_lt_compat_l : forall r r1 r2:R, r1 < r2 -> r + r1 < r + r2.
Proof.
intros. rewrite RbaseSymbolsImpl.Rlt_def. rewrite RbaseSymbolsImpl.Rlt_def in H.
- do 2 rewrite Rrepr_plus. apply Rlt_forget.
- apply Rplus_lt_compat_l. apply Rlt_epsilon. exact H.
+ do 2 rewrite Rrepr_plus. apply CRealLtForget.
+ apply CReal_plus_lt_compat_l. apply CRealLtEpsilon. exact H.
Qed.
(**********)
Lemma Rmult_lt_compat_l : forall r r1 r2:R, 0 < r -> r1 < r2 -> r * r1 < r * r2.
Proof.
intros. rewrite RbaseSymbolsImpl.Rlt_def. rewrite RbaseSymbolsImpl.Rlt_def in H.
- do 2 rewrite Rrepr_mult. apply Rlt_forget. apply Rmult_lt_compat_l.
- rewrite <- (Rquot2 (CRzero CR)). unfold IZR in H.
- rewrite RbaseSymbolsImpl.R0_def in H. apply Rlt_epsilon. exact H.
- rewrite RbaseSymbolsImpl.Rlt_def in H0. apply Rlt_epsilon. exact H0.
+ do 2 rewrite Rrepr_mult. apply CRealLtForget. apply CReal_mult_lt_compat_l.
+ rewrite <- (Rquot2 0%CReal). unfold IZR in H.
+ rewrite RbaseSymbolsImpl.R0_def in H. apply CRealLtEpsilon. exact H.
+ rewrite RbaseSymbolsImpl.Rlt_def in H0. apply CRealLtEpsilon. exact H0.
Qed.
Hint Resolve Rlt_asym Rplus_lt_compat_l Rmult_lt_compat_l: real.
@@ -274,119 +276,133 @@ Arguments INR n%nat.
(**********************************************************)
Lemma Rrepr_INR : forall n : nat,
- Req (Rrepr (INR n)) (ConstructiveRIneq.INR n).
+ CRealEq (Rrepr (INR n)) (inject_Z (Z.of_nat n)).
Proof.
induction n.
- apply Rrepr_0.
- - simpl. destruct n. apply Rrepr_1.
- rewrite Rrepr_plus, <- IHn, Rrepr_1. reflexivity.
+ - replace (Z.of_nat (S n)) with (Z.of_nat n + 1)%Z.
+ simpl. destruct n. apply Rrepr_1.
+ rewrite Rrepr_plus,inject_Z_plus, <- IHn, Rrepr_1. reflexivity.
+ replace 1%Z with (Z.of_nat 1). rewrite <- (Nat2Z.inj_add n 1).
+ apply f_equal. rewrite Nat.add_comm. reflexivity. reflexivity.
Qed.
Lemma Rrepr_IPR2 : forall n : positive,
- Req (Rrepr (IPR_2 n)) (ConstructiveRIneq.IPR_2 n).
+ CRealEq (Rrepr (IPR_2 n)) (inject_Z (Z.pos (n~0))).
Proof.
induction n.
- - unfold IPR_2, ConstructiveRIneq.IPR_2.
- rewrite RbaseSymbolsImpl.R1_def, Rrepr_mult, Rrepr_plus, Rrepr_plus, <- IHn.
- unfold IPR_2.
- rewrite Rquot2. rewrite RbaseSymbolsImpl.R1_def. reflexivity.
- - unfold IPR_2, ConstructiveRIneq.IPR_2.
- rewrite Rrepr_mult, Rrepr_plus, <- IHn.
- rewrite RbaseSymbolsImpl.R1_def. rewrite Rquot2.
- unfold IPR_2. rewrite RbaseSymbolsImpl.R1_def. reflexivity.
- - unfold IPR_2, ConstructiveRIneq.IPR_2.
- rewrite RbaseSymbolsImpl.R1_def.
- rewrite Rrepr_plus, Rquot2. reflexivity.
+ - simpl. replace (Z.pos n~1~0) with ((Z.pos n~0 + 1) + (Z.pos n~0 + 1))%Z.
+ rewrite RbaseSymbolsImpl.R1_def, Rrepr_mult, inject_Z_plus, inject_Z_plus.
+ rewrite Rrepr_plus, Rrepr_plus, <- IHn.
+ rewrite Rquot2, CReal_mult_plus_distr_r, CReal_mult_1_l.
+ rewrite (CReal_plus_comm 1%CReal). repeat rewrite CReal_plus_assoc.
+ apply CReal_plus_morph. reflexivity.
+ reflexivity.
+ repeat rewrite <- Pos2Z.inj_add. apply f_equal.
+ rewrite Pos.add_diag. apply f_equal.
+ rewrite Pos.add_1_r. reflexivity.
+ - simpl. replace (Z.pos n~0~0) with ((Z.pos n~0) + (Z.pos n~0))%Z.
+ rewrite RbaseSymbolsImpl.R1_def, Rrepr_mult, inject_Z_plus.
+ rewrite Rrepr_plus, <- IHn.
+ rewrite Rquot2, CReal_mult_plus_distr_r, CReal_mult_1_l. reflexivity.
+ rewrite <- Pos2Z.inj_add. apply f_equal.
+ rewrite Pos.add_diag. reflexivity.
+ - simpl. rewrite Rrepr_plus, RbaseSymbolsImpl.R1_def, Rquot2.
+ replace 2%Z with (1 + 1)%Z. rewrite inject_Z_plus. reflexivity.
+ reflexivity.
Qed.
Lemma Rrepr_IPR : forall n : positive,
- Req (Rrepr (IPR n)) (ConstructiveRIneq.IPR n).
+ CRealEq (Rrepr (IPR n)) (inject_Z (Z.pos n)).
Proof.
intro n. destruct n.
- - unfold IPR, ConstructiveRIneq.IPR.
- rewrite Rrepr_plus, <- Rrepr_IPR2.
- rewrite RbaseSymbolsImpl.R1_def. rewrite Rquot2. reflexivity.
- - unfold IPR, ConstructiveRIneq.IPR.
- apply Rrepr_IPR2.
+ - unfold IPR. rewrite Rrepr_plus.
+ replace (n~1)%positive with (n~0 + 1)%positive.
+ rewrite Pos2Z.inj_add, inject_Z_plus, <- Rrepr_IPR2, CReal_plus_comm.
+ rewrite RbaseSymbolsImpl.R1_def, Rquot2. reflexivity.
+ rewrite Pos.add_1_r. reflexivity.
+ - apply Rrepr_IPR2.
- unfold IPR. rewrite RbaseSymbolsImpl.R1_def. apply Rquot2.
Qed.
Lemma Rrepr_IZR : forall n : Z,
- Req (Rrepr (IZR n)) (ConstructiveRIneq.IZR n).
+ CRealEq (Rrepr (IZR n)) (inject_Z n).
Proof.
intros [|p|n].
- unfold IZR. rewrite RbaseSymbolsImpl.R0_def. apply Rquot2.
- apply Rrepr_IPR.
- - unfold IZR, ConstructiveRIneq.IZR.
- rewrite <- Rrepr_IPR, Rrepr_opp. reflexivity.
+ - unfold IZR. rewrite Rrepr_opp, Rrepr_IPR. rewrite <- opp_inject_Z.
+ replace (- Z.pos n)%Z with (Z.neg n). reflexivity. reflexivity.
Qed.
(**********)
Lemma archimed : forall r:R, IZR (up r) > r /\ IZR (up r) - r <= 1.
Proof.
intro r. unfold up.
- destruct (Rarchimedean (Rrepr r)) as [n nmaj], (total_order_T (IZR n - r) R1).
+ destruct (CRealArchimedean (Rrepr r)) as [n nmaj], (total_order_T (IZR n - r) R1).
destruct s.
- split. unfold Rgt. rewrite RbaseSymbolsImpl.Rlt_def. rewrite Rrepr_IZR.
- apply Rlt_forget. apply nmaj.
+ apply CRealLtForget. apply nmaj.
unfold Rle. left. exact r0.
- split. unfold Rgt. rewrite RbaseSymbolsImpl.Rlt_def.
- rewrite Rrepr_IZR. apply Rlt_forget. apply nmaj. right. exact e.
+ rewrite Rrepr_IZR. apply CRealLtForget. apply nmaj. right. exact e.
- split.
+ unfold Rgt, Z.pred. rewrite RbaseSymbolsImpl.Rlt_def.
- rewrite Rrepr_IZR, plus_IZR.
+ rewrite Rrepr_IZR, inject_Z_plus.
rewrite RbaseSymbolsImpl.Rlt_def in r0. rewrite Rrepr_minus in r0.
rewrite <- (Rrepr_IZR n).
- unfold ConstructiveRIneq.IZR, ConstructiveRIneq.IPR.
- apply Rlt_forget. apply Rlt_epsilon in r0.
- unfold ConstructiveRIneq.Rminus in r0.
- apply (ConstructiveRIneq.Rplus_lt_compat_l
- (ConstructiveRIneq.Rplus (Rrepr r) (ConstructiveRIneq.Ropp (Rrepr R1))))
+ apply CRealLtForget. apply CRealLtEpsilon in r0.
+ unfold CReal_minus in r0.
+ apply (CReal_plus_lt_compat_l
+ (CReal_plus (Rrepr r) (CReal_opp (Rrepr R1))))
in r0.
- rewrite ConstructiveRIneq.Rplus_assoc,
- ConstructiveRIneq.Rplus_opp_l,
- ConstructiveRIneq.Rplus_0_r,
+ rewrite CReal_plus_assoc,
+ CReal_plus_opp_l,
+ CReal_plus_0_r,
RbaseSymbolsImpl.R1_def, Rquot2,
- ConstructiveRIneq.Rplus_comm,
- ConstructiveRIneq.Rplus_assoc,
- <- (ConstructiveRIneq.Rplus_assoc (ConstructiveRIneq.Ropp (Rrepr r))),
- ConstructiveRIneq.Rplus_opp_l,
- ConstructiveRIneq.Rplus_0_l
+ CReal_plus_comm,
+ CReal_plus_assoc,
+ <- (CReal_plus_assoc (CReal_opp (Rrepr r))),
+ CReal_plus_opp_l,
+ CReal_plus_0_l
in r0.
- exact r0.
+ rewrite (opp_inject_Z 1). exact r0.
+ destruct (total_order_T (IZR (Z.pred n) - r) 1). destruct s.
left. exact r1. right. exact e.
- exfalso. destruct nmaj as [_ nmaj]. rewrite <- Rrepr_IZR in nmaj.
+ exfalso. destruct nmaj as [_ nmaj].
+ pose proof Rrepr_IZR as iz. unfold inject_Z in iz.
+ rewrite <- iz in nmaj.
apply (Rlt_asym (IZR n) (r + 2)).
rewrite RbaseSymbolsImpl.Rlt_def. rewrite Rrepr_plus. rewrite (Rrepr_plus 1 1).
- apply Rlt_forget.
- apply (ConstructiveRIneq.Rlt_le_trans
- _ (ConstructiveRIneq.Rplus (Rrepr r) (ConstructiveRIneq.IZR 2))).
- apply nmaj.
- unfold IZR, IPR. rewrite RbaseSymbolsImpl.R1_def, Rquot2. apply Rle_refl.
+ apply CRealLtForget.
+ apply (CReal_lt_le_trans _ _ _ nmaj).
+ unfold IZR, IPR. rewrite RbaseSymbolsImpl.R1_def, Rquot2.
+ rewrite <- (inject_Z_plus 1 1). apply CRealLe_refl.
clear nmaj.
unfold Z.pred in r1. rewrite RbaseSymbolsImpl.Rlt_def in r1.
- rewrite Rrepr_minus, (Rrepr_IZR (n + -1)), plus_IZR,
- <- (Rrepr_IZR n)
- in r1.
- unfold ConstructiveRIneq.IZR, ConstructiveRIneq.IPR in r1.
+ rewrite Rrepr_minus, (Rrepr_IZR (n + -1)) in r1.
+ rewrite inject_Z_plus, <- (Rrepr_IZR n) in r1.
rewrite RbaseSymbolsImpl.Rlt_def, Rrepr_plus.
- apply Rlt_epsilon in r1.
- apply (ConstructiveRIneq.Rplus_lt_compat_l
- (ConstructiveRIneq.Rplus (Rrepr r) (CRone CR))) in r1.
- apply Rlt_forget.
- apply (ConstructiveRIneq.Rle_lt_trans
- _ (ConstructiveRIneq.Rplus (ConstructiveRIneq.Rplus (Rrepr r) (Rrepr 1)) (CRone CR))).
+ apply CRealLtEpsilon in r1.
+ apply (CReal_plus_lt_compat_l
+ (CReal_plus (Rrepr r) 1%CReal)) in r1.
+ apply CRealLtForget.
+ apply (CReal_le_lt_trans
+ _ (CReal_plus (CReal_plus (Rrepr r) (Rrepr 1)) 1%CReal)).
rewrite (Rrepr_plus 1 1). unfold IZR, IPR.
- rewrite RbaseSymbolsImpl.R1_def, (Rquot2 (CRone CR)), <- ConstructiveRIneq.Rplus_assoc.
- apply Rle_refl.
- rewrite <- (ConstructiveRIneq.Rplus_comm (Rrepr 1)),
- <- ConstructiveRIneq.Rplus_assoc,
- (ConstructiveRIneq.Rplus_comm (Rrepr 1))
+ rewrite RbaseSymbolsImpl.R1_def, (Rquot2 1%CReal), <- CReal_plus_assoc.
+ apply CRealLe_refl.
+ rewrite <- (CReal_plus_comm (Rrepr 1)),
+ <- CReal_plus_assoc,
+ (CReal_plus_comm (Rrepr 1))
in r1.
- apply (ConstructiveRIneq.Rlt_le_trans _ _ _ r1).
- unfold ConstructiveRIneq.Rminus.
- ring_simplify. apply ConstructiveRIneq.Rle_refl.
+ apply (CReal_lt_le_trans _ _ _ r1).
+ unfold CReal_minus. rewrite (opp_inject_Z 1).
+ rewrite (CReal_plus_comm (Rrepr (IZR n))), CReal_plus_assoc,
+ <- (CReal_plus_assoc 1), <- (CReal_plus_assoc 1), CReal_plus_opp_r.
+ rewrite CReal_plus_0_l, CReal_plus_comm, CReal_plus_assoc,
+ CReal_plus_opp_l, CReal_plus_0_r.
+ apply CRealLe_refl.
Qed.
(**********************************************************)
@@ -408,29 +424,29 @@ Lemma completeness :
forall E:R -> Prop,
bound E -> (exists x : R, E x) -> { m:R | is_lub E m }.
Proof.
- intros. pose (fun x:ConstructiveRIneq.R => E (Rabst x)) as Er.
- assert (forall x y : CRcarrier CR, orderEq (CRcarrier CR) (CRlt CR) x y -> Er x <-> Er y)
+ intros. pose (fun x:CReal => E (Rabst x)) as Er.
+ assert (forall x y : CReal, CRealEq x y -> Er x <-> Er y)
as Erproper.
{ intros. unfold Er. replace (Rabst x) with (Rabst y). reflexivity.
apply Rquot1. do 2 rewrite Rquot2. split; apply H1. }
- assert (exists x : ConstructiveRIneq.R, Er x) as Einhab.
+ assert (exists x : CReal, Er x) as Einhab.
{ destruct H0. exists (Rrepr x). unfold Er.
replace (Rabst (Rrepr x)) with x. exact H0.
apply Rquot1. rewrite Rquot2. reflexivity. }
- assert (exists x : ConstructiveRIneq.R,
- (forall y:ConstructiveRIneq.R, Er y -> ConstructiveRIneq.Rle y x))
+ assert (exists x : CReal,
+ (forall y:CReal, Er y -> CRealLe y x))
as Ebound.
{ destruct H. exists (Rrepr x). intros y Ey. rewrite <- (Rquot2 y).
apply Rrepr_le. apply H. exact Ey. }
- destruct (CR_sig_lub CR
+ destruct (CR_sig_lub CRealImplem
Er Erproper sig_forall_dec sig_not_dec Einhab Ebound).
exists (Rabst x). split.
intros y Ey. apply Rrepr_le. rewrite Rquot2.
- unfold ConstructiveRIneq.Rle. apply a.
+ unfold CRealLe. apply a.
unfold Er. replace (Rabst (Rrepr y)) with y. exact Ey.
apply Rquot1. rewrite Rquot2. reflexivity.
intros. destruct a. apply Rrepr_le. rewrite Rquot2.
- unfold ConstructiveRIneq.Rle. apply H3. intros y Ey.
+ unfold CRealLe. apply H3. intros y Ey.
intros. rewrite <- (Rquot2 y) in H4.
apply Rrepr_le in H4. exact H4.
apply H1, Ey.
diff --git a/theories/Reals/Rdefinitions.v b/theories/Reals/Rdefinitions.v
index b1ce8109ca..35025ba9bc 100644
--- a/theories/Reals/Rdefinitions.v
+++ b/theories/Reals/Rdefinitions.v
@@ -8,17 +8,18 @@
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
-(* Classical quotient of the constructive Cauchy real numbers.
- This file contains the definition of the classical real numbers
- type R, its algebraic operations, its order and the proof that
- it is total, and the proof that R is archimedean (up).
- It also defines IZR, the ring morphism from Z to R. *)
+(* Abstraction of classical Dedekind reals behind an opaque module,
+ for backward compatibility.
+
+ This file also contains the proof that classical reals are a
+ quotient of constructive Cauchy reals. *)
Require Export ZArith_base.
Require Import QArith_base.
-Require Import ConstructiveRIneq.
+Require Import ConstructiveCauchyReals.
+Require Import ConstructiveCauchyRealsMult.
+Require Import ClassicalDedekindReals.
-Parameter R : Set.
(* Declare primitive numeral notations for Scope R_scope *)
Declare Scope R_scope.
@@ -27,26 +28,18 @@ Declare ML Module "r_syntax_plugin".
(* Declare Scope R_scope with Key R *)
Delimit Scope R_scope with R.
-(* Automatically open scope R_scope for arguments of type R *)
-Bind Scope R_scope with R.
-
Local Open Scope R_scope.
-(* The limited principle of omniscience *)
-Axiom sig_forall_dec
- : forall (P : nat -> Prop),
- (forall n, {P n} + {~P n})
- -> {n | ~P n} + {forall n, P n}.
-
-Axiom sig_not_dec : forall P : Prop, { ~~P } + { ~P }.
-
-Axiom Rabst : ConstructiveRIneq.R -> R.
-Axiom Rrepr : R -> ConstructiveRIneq.R.
-Axiom Rquot1 : forall x y:R, Req (Rrepr x) (Rrepr y) -> x = y.
-Axiom Rquot2 : forall x:ConstructiveRIneq.R, Req (Rrepr (Rabst x)) x.
(* Those symbols must be kept opaque, for backward compatibility. *)
Module Type RbaseSymbolsSig.
+ Parameter R : Set.
+ Bind Scope R_scope with R.
+ Axiom Rabst : CReal -> R.
+ Axiom Rrepr : R -> CReal.
+ Axiom Rquot1 : forall x y:R, CRealEq (Rrepr x) (Rrepr y) -> x = y.
+ Axiom Rquot2 : forall x:CReal, CRealEq (Rrepr (Rabst x)) x.
+
Parameter R0 : R.
Parameter R1 : R.
Parameter Rplus : R -> R -> R.
@@ -54,29 +47,34 @@ Module Type RbaseSymbolsSig.
Parameter Ropp : R -> R.
Parameter Rlt : R -> R -> Prop.
- Parameter R0_def : R0 = Rabst (CRzero CR).
- Parameter R1_def : R1 = Rabst (CRone CR).
+ Parameter R0_def : R0 = Rabst (inject_Q 0).
+ Parameter R1_def : R1 = Rabst (inject_Q 1).
Parameter Rplus_def : forall x y : R,
- Rplus x y = Rabst (ConstructiveRIneq.Rplus (Rrepr x) (Rrepr y)).
+ Rplus x y = Rabst (CReal_plus (Rrepr x) (Rrepr y)).
Parameter Rmult_def : forall x y : R,
- Rmult x y = Rabst (ConstructiveRIneq.Rmult (Rrepr x) (Rrepr y)).
+ Rmult x y = Rabst (CReal_mult (Rrepr x) (Rrepr y)).
Parameter Ropp_def : forall x : R,
- Ropp x = Rabst (ConstructiveRIneq.Ropp (Rrepr x)).
+ Ropp x = Rabst (CReal_opp (Rrepr x)).
Parameter Rlt_def : forall x y : R,
- Rlt x y = ConstructiveRIneq.RltProp (Rrepr x) (Rrepr y).
+ Rlt x y = CRealLtProp (Rrepr x) (Rrepr y).
End RbaseSymbolsSig.
Module RbaseSymbolsImpl : RbaseSymbolsSig.
- Definition R0 : R := Rabst (CRzero CR).
- Definition R1 : R := Rabst (CRone CR).
+ Definition R := DReal.
+ Definition Rabst := DRealAbstr.
+ Definition Rrepr := DRealRepr.
+ Definition Rquot1 := DRealQuot1.
+ Definition Rquot2 := DRealQuot2.
+ Definition R0 : R := Rabst (inject_Q 0).
+ Definition R1 : R := Rabst (inject_Q 1).
Definition Rplus : R -> R -> R
- := fun x y : R => Rabst (ConstructiveRIneq.Rplus (Rrepr x) (Rrepr y)).
+ := fun x y : R => Rabst (CReal_plus (Rrepr x) (Rrepr y)).
Definition Rmult : R -> R -> R
- := fun x y : R => Rabst (ConstructiveRIneq.Rmult (Rrepr x) (Rrepr y)).
+ := fun x y : R => Rabst (CReal_mult (Rrepr x) (Rrepr y)).
Definition Ropp : R -> R
- := fun x : R => Rabst (ConstructiveRIneq.Ropp (Rrepr x)).
+ := fun x : R => Rabst (CReal_opp (Rrepr x)).
Definition Rlt : R -> R -> Prop
- := fun x y : R => ConstructiveRIneq.RltProp (Rrepr x) (Rrepr y).
+ := fun x y : R => CRealLtProp (Rrepr x) (Rrepr y).
Definition R0_def := eq_refl R0.
Definition R1_def := eq_refl R1.
@@ -88,6 +86,7 @@ End RbaseSymbolsImpl.
Export RbaseSymbolsImpl.
(* Keep the same names as before *)
+Notation R := RbaseSymbolsImpl.R (only parsing).
Notation R0 := RbaseSymbolsImpl.R0 (only parsing).
Notation R1 := RbaseSymbolsImpl.R1 (only parsing).
Notation Rplus := RbaseSymbolsImpl.Rplus (only parsing).
@@ -95,6 +94,9 @@ Notation Rmult := RbaseSymbolsImpl.Rmult (only parsing).
Notation Ropp := RbaseSymbolsImpl.Ropp (only parsing).
Notation Rlt := RbaseSymbolsImpl.Rlt (only parsing).
+(* Automatically open scope R_scope for arguments of type R *)
+Bind Scope R_scope with R.
+
Infix "+" := Rplus : R_scope.
Infix "*" := Rmult : R_scope.
Notation "- x" := (Ropp x) : R_scope.
@@ -160,11 +162,11 @@ Arguments IZR z%Z : simpl never.
Lemma total_order_T : forall r1 r2:R, {Rlt r1 r2} + {r1 = r2} + {Rlt r2 r1}.
Proof.
- intros. destruct (Rlt_lpo_dec (Rrepr r1) (Rrepr r2) sig_forall_dec).
+ intros. destruct (CRealLt_lpo_dec (Rrepr r1) (Rrepr r2) sig_forall_dec).
- left. left. rewrite RbaseSymbolsImpl.Rlt_def.
- apply Rlt_forget. exact r.
- - destruct (Rlt_lpo_dec (Rrepr r2) (Rrepr r1) sig_forall_dec).
- + right. rewrite RbaseSymbolsImpl.Rlt_def. apply Rlt_forget. exact r0.
+ apply CRealLtForget. exact c.
+ - destruct (CRealLt_lpo_dec (Rrepr r2) (Rrepr r1) sig_forall_dec).
+ + right. rewrite RbaseSymbolsImpl.Rlt_def. apply CRealLtForget. exact c.
+ left. right. apply Rquot1. split; assumption.
Qed.
@@ -178,9 +180,9 @@ Proof.
Qed.
Lemma Rrepr_appart_0 : forall x:R,
- (x < R0 \/ R0 < x) -> Rappart (Rrepr x) (CRzero CR).
+ (x < R0 \/ R0 < x) -> CReal_appart (Rrepr x) (inject_Q 0).
Proof.
- intros. apply CRltDisjunctEpsilon. destruct H.
+ intros. apply CRealLtDisjunctEpsilon. destruct H.
left. rewrite RbaseSymbolsImpl.Rlt_def, RbaseSymbolsImpl.R0_def, Rquot2 in H.
exact H.
right. rewrite RbaseSymbolsImpl.Rlt_def, RbaseSymbolsImpl.R0_def, Rquot2 in H.
@@ -192,7 +194,7 @@ Module Type RinvSig.
Parameter Rinv_def : forall x : R,
Rinv x = match Req_appart_dec x R0 with
| left _ => R0 (* / 0 is undefined, we take 0 arbitrarily *)
- | right r => Rabst ((ConstructiveRIneq.Rinv (Rrepr x) (Rrepr_appart_0 x r)))
+ | right r => Rabst ((CReal_inv (Rrepr x) (Rrepr_appart_0 x r)))
end.
End RinvSig.
@@ -200,7 +202,7 @@ Module RinvImpl : RinvSig.
Definition Rinv : R -> R
:= fun x => match Req_appart_dec x R0 with
| left _ => R0 (* / 0 is undefined, we take 0 arbitrarily *)
- | right r => Rabst ((ConstructiveRIneq.Rinv (Rrepr x) (Rrepr_appart_0 x r)))
+ | right r => Rabst ((CReal_inv (Rrepr x) (Rrepr_appart_0 x r)))
end.
Definition Rinv_def := fun x => eq_refl (Rinv x).
End RinvImpl.
@@ -215,7 +217,7 @@ Infix "/" := Rdiv : R_scope.
(* First integer strictly above x *)
Definition up (x : R) : Z.
Proof.
- destruct (Rarchimedean (Rrepr x)) as [n nmaj], (total_order_T (IZR n - x) R1).
+ destruct (CRealArchimedean (Rrepr x)) as [n nmaj], (total_order_T (IZR n - x) R1).
destruct s.
- exact n.
- (* x = n-1 *) exact n.
--
cgit v1.2.3