aboutsummaryrefslogtreecommitdiff
path: root/test-suite/output/Int63Syntax.v
AgeCommit message (Collapse)Author
2020-05-09Add hexadecimal numeralsPierre Roux
We add hexadecimal numerals according to the following regexp 0[xX][0-9a-fA-F][0-9a-fA-F_]*(\.[0-9a-fA-F_]+)?([pP][+-]?[0-9][0-9_]*)? This is unfortunately a rather large commit. I suggest reading it in the following order: * test-suite/output/ZSyntax.{v,out} new test * test-suite/output/Int63Syntax.{v,out} '' * test-suite/output/QArithSyntax.{v,out} '' * test-suite/output/RealSyntax.{v,out} '' * test-suite/output/FloatSyntax.{v,out} '' * interp/numTok.ml{i,} extending numeral tokens * theories/Init/Hexadecimal.v adaptation of Decimal.v for the new hexadecimal Numeral Notation * theories/Init/Numeral.v new interface for Numeral Notation (basically, a numeral is either a decimal or an hexadecimal) * theories/Init/Nat.v add hexadecimal numeral notation to nat * theories/PArith/BinPosDef.v '' positive * theories/ZArith/BinIntDef.v '' Z * theories/NArith/BinNatDef.v '' N * theories/QArith/QArith_base.v '' Q * interp/notation.ml{i,} adapting implementation of numeral notations * plugins/syntax/numeral.ml '' * plugins/syntax/r_syntax.ml adapt parser for real numbers * plugins/syntax/float_syntax.ml adapt parser for primitive floats * theories/Init/Prelude.v register parser for nat * adapting the test-suite (test-suite/output/NumeralNotations.{v,out} and test-suite/output/SearchPattern.out) * remaining ml files (interp/constrex{tern,pr_ops}.ml where two open had to be permuted)
2019-04-06Fix pretty-printing of primitive integersErik Martin-Dorel
A scope delimiter was missing for primitive integers constants. Add related regression tests.
2019-02-04Primitive integersMaxime Dénès
This work makes it possible to take advantage of a compact representation for integers in the entire system, as opposed to only in some reduction machines. It is useful for heavily computational applications, where even constructing terms is not possible without such a representation. Concretely, it replaces part of the retroknowledge machinery with a primitive construction for integers in terms, and introduces a kind of FFI which maps constants to operators (on integers). Properties of these operators are expressed as explicit axioms, whereas they were hidden in the retroknowledge-based approach. This has been presented at the Coq workshop and some Coq Working Groups, and has been used by various groups for STM trace checking, computational analysis, etc. Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr> Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr> Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>