| Age | Commit message (Collapse) | Author |
|
Almost all of ml4 were removed in the process. The only remaining files
are in the test-suite and probably need a bit of fiddling with coq_makefile,
and there only two really remaning ml4 files containing code.
|
|
|
|
For some reason PR #7894 left this spurious file; this is typical of a
bad resolution of a merge, and while the file is innocuous it should
go away.
|
|
We refactor the `Coqlib` API to locate objects over a namespace
`module.object.property`.
This introduces the vernacular command `Register g as n` to expose the
Coq constant `g` under the name `n` (through the `register_ref`
function). The constant can then be dynamically located using the
`lib_ref` function.
Co-authored-by: Emilio Jesús Gallego Arias <e+git@x80.org>
Co-authored-by: Maxime Dénès <mail@maximedenes.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
We remove sections paths from kernel names. This is a cleanup as most of the times this information was unused. This implies a change in the Kernel API and small user visible changes with regards to tactic qualification. In particular, the removal of "global discharge" implies a large cleanup of code.
Additionally, the change implies that some machinery in `library` and `safe_typing` must now take an `~in_section` parameter, as to provide the information whether a section is open or not.
|
|
|
|
|
|
As far as I know, this plugin is untested and barely maintained. I don't
think it has real use cases any more, so let's move it out from the repo
and see if somebody wants to take over and maintain it.
We also remove the documentation, which was telling our users to look at
ring to see an example of reification done using quote, when in fact it
wasn't using it anymore.
|
|
Removing in passing two Local which are no-ops in practice.
|
|
[Dune](https://github.com/ocaml/dune) is a compositional declarative
build system for OCaml. It provides automatic generation of
`version.ml`, `.merlin`, `META`, `opam`, API documentation; install
management; easy integration with external libraries, test runners,
and modular builds.
In particular, Dune uniformly handles components regardless whether
they live in, or out-of-tree. This greatly simplifies cases where a
plugin [or CoqIde] is checked out in the current working copy but then
distributed separately [and vice-versa]. Dune can thus be used as a
more flexible `coq_makefile` replacement.
For now we provide experimental support for a Dune build. In order to
build Coq + the standard library with Dune type:
```
$ make -f Makefile.dune world
```
This PR includes a preliminary, developer-only preview of Dune for
Coq. There is still ongoing work, see
https://github.com/coq/coq/issues/8052 for tracking status towards
full support.
## Technical description.
Dune works out of the box with Coq, once we have fixed some modularity
issues. The main remaining challenge was to support `.vo` files.
As Dune doesn't support custom build rules yet, to properly build
`.vo` files we provide a small helper script `tools/coq_dune.ml`. The
script will scan the Coq library directories and generate the
corresponding rules for `.v -> .vo` and `.ml4 -> .ml` builds. The
script uses `coqdep` as to correctly output the dependencies of
`.v` files. `coq_dune` is akin to `coq_makefile` and should be able to
be used to build Coq projects in the future.
Due to this pitfall, the build process has to proceed in three stages:
1) build `coqdep` and `coq_dune`; 2) generate `dune` files for
`theories` and `plugins`; 3) perform a regular build with all
targets are in scope.
## FAQ
### Why Dune?
Coq has a moderately complex build system and it is not a secret that
many developer-hours have been spent fighting with `make`.
In particular, the current `make`-based system does offer poor support
to verify that the current build rules and variables are coherent, and
requires significant manual, error-prone. Many variables must be
passed by hand, duplicated, etc... Additionally, our make system
offers poor integration with now standard OCaml ecosystem tools such
as `opam`, `ocamlfind` or `odoc`. Another critical point is build
compositionality. Coq is rich in 3rd party contributions, and a big
shortcoming of the current make system is that it cannot be used to
build these projects; requiring us to maintain a custom tool,
`coq_makefile`, with the corresponding cost.
In the past, there has been some efforts to migrate Coq to more
specialized build systems, however these stalled due to a variety of
reasons. Dune, is a declarative, OCaml-specific build tool that is on
the path to become the standard build system for the OCaml ecosystem.
Dune seems to be a good fit for Coq well: it is well-supported, fast,
compositional, and designed for large projects.
### Does Dune replace the make-based build system?
The current, make-based build system is unmodified by this PR and kept
as the default option. However, Dune has the potential
### Is this PR complete? What does it provide?
This PR is ready for developer preview and feedback. The build system
is functional, however, more work is necessary in order to make Dune
the default for Coq.
The main TODOs are tracked at https://github.com/coq/coq/issues/8052
This PR allows developers to use most of the features of Dune today:
- Modular organization of the codebase; each component is built only
against declared dependencies so components are checked for
containment more strictly.
- Hygienic builds; Dune places all artifacts under `_build`.
- Automatic generation of `.install` files, simplified OPAM workflow.
- `utop` support, `-opaque` in developer mode, etc...
- `ml4` files are handled using `coqp5`, a native-code customized
camlp5 executable which brings much faster `ml4 -> ml` processing.
### What dependencies does Dune require?
Dune doesn't depend on any 3rd party package other than the OCaml compiler.
### Some Benchs:
```
$ /usr/bin/time make DUNEOPT="-j 1000" -f Makefile.dune states
59.50user 18.81system 0:29.83elapsed 262%CPU (0avgtext+0avgdata 302996maxresident)k
0inputs+646632outputs (0major+4893811minor)pagefaults 0swaps
$ /usr/bin/time sh -c "./configure -local -native-compiler no && make -j states"
88.21user 23.65system 0:32.96elapsed 339%CPU (0avgtext+0avgdata 304992maxresident)k
0inputs+1051680outputs (0major+5300680minor)pagefaults 0swaps
```
|
|
This is a function that keeps beeing asked or reimplemented. It doesn't hurt
adding it to the Ltac API.
|
|
|
|
Apparently it was not useful. I don't remember what I was thinking
when I added it.
|
|
We only use it locally, so we simply register the ML tactic inside the module
but we do not export the syntax.
|
|
The code was wrong as it relies once again on term equality and fails
on polymorphic constants. Quote is bound to disappear, so we write a
correct version of this 10-line function in setoid_ring.
|
|
reference was defined as Ident or Qualid, but the qualid type already
permits empty paths. So we had effectively two representations for
unqualified names, that were not seen as equal by eq_reference.
We remove the reference type and replace its uses by qualid.
|
|
We move the last 3 types to more adequate places.
|
|
Simplify the newring hack
|
|
The new implementation is 100% compatible with the previous one, but it
is more compact and does not use a tricky translation function from the
kernel.
|
|
|
|
|
|
clear_hyps remain with no alternative
|
|
In #6092, `global_reference` was moved to `kernel`. It makes sense to
go further and use the current kernel style for names.
This has a good effect on the dependency graph, as some core modules
don't depend on library anymore.
A question about providing equality for the GloRef module remains, as
there are two different notions of equality for constants. In that
sense, `KerPair` seems suspicious and at some point it should be
looked at.
|
|
Normalization sounds like it should be semantically noop.
|
|
[skip ci]
|
|
Unfortunately, mli-only files cannot be included in packs, so we have
the weird situation that the scope for `Tacexpr` is wrong. So we
cannot address the module as `Ltac_plugin.Tacexpr` but it lives in the
global namespace instead.
This creates problem when using other modular build/packing strategies
[such as #6857] This could be indeed considered a bug in the OCaml
compiler.
In order to remedy this situation we face two choices:
- leave the module out of the pack (!)
- create an implementation for the module
I chose the second solution as it seems to me like the most sensible
choice.
cc: #6512.
|
|
|
|
|
|
|
|
This commit was motivated by true spurious conversions arising in my
`to_constr` debug branch.
The changes here need careful review as the tradeoffs are subtle and
still a lot of clean up remains to be done in `vernac/*`.
We have opted for penalize [minimally] the few users coming from true
`Constr`-land, but I am sure we can tweak code in a much better way.
In particular, it is not clear if internalization should take an
`evar_map` even in the cases where it is not triggered, see the
changes under `plugins` for a good example.
Also, the new return type of `Pretyping.understand` should undergo
careful review.
We don't touch `Impargs` as it is not clear how to proceed, however,
the current type of `compute_implicits_gen` looks very suspicious as
it is called often with free evars.
Some TODOs are:
- impargs was calling whd_all, the Econstr equivalent can be either
+ Reductionops.whd_all [which does refolding and no sharing]
+ Reductionops.clos_whd_flags with all as a flag.
|
|
Ring_theory.v)
|
|
|
|
We follow the suggestions in #402 and turn uses of `Loc.located` in
`vernac` into `CAst.t`. The impact should be low as this change mostly
affects top-level vernaculars.
With this change, we are even closer to automatically map a text
document to its AST in a programmatic way.
|
|
|
|
longer use camlp4.
|
|
In the test we do [let X : Type@{i} := Set in ...] with Set
abstracted. The constraint [Set < i] was lost in the abstract.
Universes of a monomorphic reference [c] are considered to appear in
the term [c].
|
|
This reduces conversions between ContextSet/UContext and encodes
whether we are polymorphic by which constructor we use rather than
using some boolean.
|
|
We can enforce properties through check_univ_decl, or get an arbitrary
ordered context with UState.context / Evd.to_universe_context (the
later being a new wrapper of the former).
|
|
|
|
With help from Guillaume (see discussion at
https://github.com/coq/coq/issues/6191).
|
|
We'd like to handle proofs functionally we thus recommend not to use
printing functions without an explicit context.
We also adapt most of the code, making more explicit where the
printing environment is coming from.
An open task is to refactor some code so we gradually make the
`Pfedit.get_current_context ()` disappear.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
The test suite cases are preserved until the feature is actually removed.
|
|
The manual has long stated that these forms are deprecated. We add a
warning for them, as indeed `Add Morphism` is an "proof evil" [*]
command, and we may want to remove it in the future.
We've also fixed the stdlib not to emit the warning.
[*] https://ncatlab.org/nlab/show/principle+of+equivalence
|
|
We dont care about the order of the binder map ([map] in the code) so
no need to do tricky things with it.
|
|
work better on them
|
|
The internal detype function takes an additional arguments dictating
whether it should be eager or lazy.
We introduce a new type of delayed `DAst.t` AST nodes and use it for
`glob_constr`.
Such type, instead of only containing a value, it can contain a lazy
computation too. We use a GADT to discriminate between both uses
statically, so that no delayed terms ever happen to be
marshalled (which would raise anomalies).
We also fix a regression in the test-suite:
Mixing laziness and effects is a well-known hell. Here, an exception
that was raised for mere control purpose was delayed and raised at a
later time as an anomaly. We make the offending function eager.
|
|
|
|
|
|
|