| Age | Commit message (Collapse) | Author |
|
This completes the refactoring [for now] of the core `Declare`
interface, and will allow much internal refactoring in the future.
In particular, we remove the low-level Proof_ending type, and instead
introduce higher-level constructors for the several declare users.
Future PRs will change the internal representation of proof handling
to better enforce some invariants that should hold for specific
proofs.
|
|
We unify information about constants so it is shared among all the
paths [interactive, NI, obligations].
IMHO the current setup looks pretty good, with information split into
a per-constant record `CInfo.t` and variables affecting mutual
definitions at once, which live in `Info.t`.
Main information outside our `Info` record is `opaque`, which is
provided at different moments in several cases.
There are a few nits regarding interactive proofs, which will go away
in the next commits.
|
|
This is in preparation for the next commit which will clean-up the
current API flow in `Declare`.
|
|
|
|
The module is now a stub. We choose to be explicit on the parameters
for now, this will improve in next commits with the refactoring of
proof / constant information.
|
|
At this point the record in lemmas was just a stub; next commit will
stop exposing the internals of mutual information, and pave the way
for the refactoring of `Info.t` handling in the Declare interface.
|
|
We complete some arduous refactoring in order to bring all the
internals and code of constant / proof saving into the same module.
In particular, this PR moves the remaining parts of proof saving from
`Lemmas` to `Declare`.
The reduction in exposed internals is considerable; in particular, we
remove the export of the internals of `proof_entry` and `proof_object`
[used in delayed proofs], which will allow us to start to address many
issues with the current setup, such as #10363 .
There are still some TODOs, that will be addressed in subsequent PRs:
- Remove `declare_constant` in favor of higher-level APIs
- Then, remove access to `proof_entry` entirely
- Refactor current very verbose handling of proof info.
- Remove compat modules / API.
- Rework handling of delayed proofs [this may be hard due to state and the STM]
- Reify Hook API for the case where it acts as a continuation [that is to say, declaring constants from the Hook]
List of remaining offenders for `proof_entry` / `declare_constant` in
the codebase:
- File "vernac/comHints.ml"
- File "vernac/indschemes.ml"
- File "vernac/comProgramFixpoint.ml"
- File "vernac/comAssumption.ml"
- File "vernac/record.ml"
- File "plugins/ltac/leminv.ml"
- File "plugins/setoid_ring/newring.ml"
- File "plugins/funind/recdef.ml"
- File "plugins/funind/gen_principle.ml"
|
|
This still needs API cleanup but we defer it to the moment we are
ready to make the internals private.
|
|
We place creation and saving of interactive proofs in the same module;
this will allow to make `proof_entry` private, improving invariants
and control over clients, and to reduce the API [for example next
commit will move abstract declaration into this module, removing the
exported ad-hoc `build_constant_by_tactic`]
Next step will be to unify all the common code in the interactive /
non-interactive case; but we need to tweak the handling of obligations
first.
|
|
Add headers to a few files which were missing them.
|
|
We can use logical kind for the same purpose, which is mainly
dumpglob, so `goal_object_kind` was never matched against, making this
transformation safe.
|
|
We move the bulk of `Decl_kinds` to a better place [namely
`interp/decls`] and refactor the use of this information quite a bit.
The information seems to be used almost only for `Dumpglob`, so it
certainly should end there to achieve a cleaner core.
Note the previous commits, as well as the annotations regarding the
dubious use of the "variable" data managed by the `Decls` file.
IMO this needs more work, but this should be a good start.
|
|
We split `{goal,declaration,assumption}_kind` into their
components. This makes sense as each part of this triple is handled by
a different layer, namely:
- `polymorphic` status: necessary for the lower engine layers;
- `locality`: only used in `vernac` top-level constants
- `kind`: merely used for cosmetic purposes [could indeed be removed /
pushed upwards]
We also profit from this refactoring to add some named parameters to
the top-level definition API which is quite parameter-hungry.
More refactoring is possible and will come in further commits, in
particular this is a step towards unifying the definition / lemma save path.
|
|
This information is already present on `Proof.t`, so we extract it
form there.
Moreover, this information is essential to the lower-level proof, as
opposed to the "kind" information which is only relevant to the vernac
layer; we will move it thus to its proper layer in subsequent commits.
|
|
Lemmas.info was a bit out of hand, as well as the parameters to the
`start_*` family. Most of the info is not needed and should hopefully
remain constrained to special cases, most callers only set the hook,
and obligations should be better served by a `start_obligation`
function soon.
|
|
obligation ones.
Ack-by: ejgallego
Ack-by: gares
Reviewed-by: ppedrot
|
|
|
|
We radically redesign how proof closing information is stored. Instead
of a user-defined closure, we now reify control into a single data
structure containing the needed information.
In this scheme, the `Lemmas` module can get extra information with
obligation info when opening the proof, and will correspondingly call
the right closing function based on this.
This is the start of what could be a much bigger unification of all
the proof save paths.
|
|
This makes the type of terminator simpler, progressing towards its
total reification.
|
|
As of now, hooks were stored in the terminators as closures, we place
them instead in the proof object and are thus passed back at proof
closing time.
This helps towards the reification and unification of terminators.
|
|
We move the role data into the evarmap instead.
|
|
We rename modify to map [more in line with the rest of the system] and
make the endline function specific, as it is only used in one case.
|
|
We refactor the terminator API to make it more internal. Indeed we
remove `set_terminator` and `get_terminator` is only there due to
access to internals in the STM `save_proof` path by the infamous
`?proof` parameter.
After this only 2 non-standard terminators remain: obligations and
derive. We will refactor those in next PRs.
|
|
The main idea of this PR is to distinguish the types of "proof object"
`Proof_global.t` and the type of "proof object associated to a
constant, the new `Lemmas.t`.
This way, we can move the terminator setup to the higher layer in
`vernac`, which is the one that really knows about constants, paving
the way for further simplification and in particular for a unified
handling of constant saving by removal of the control inversion here.
Terminators are now internal to `Lemmas`, as it is the only part of
the code applying them.
As a consequence, proof nesting is now handled by `Lemmas`, and
`Proof_global.t` is just a single `Proof.t` plus some environmental
meta-data.
We are also enable considerable simplification in a future PR, as this
patch makes `Proof.t` and `Proof_global.t` essentially the same, so we
should expect to handle them under a unified interface.
|
|
Formerly, knowing if a declaration was to be discharged, to be global
but invisible at import, or to be global but visible at import was
obtained by combining the parser-level information (i.e. use of
Variable/Hypothesis/Let vs use of Axiom/Parameter/Definition/..., use
of Local vs Global) with the result of testing whether there were open
sections.
We change the meaning of the Discharge flag: it does not tell anymore
that it was syntactically a Variable/Hypothesis/Let, but tells the
expected semantics of the declaration (issuing a warning in the
parser-to-interpreter step if the semantics is not the one suggested
by the syntax). In particular, the interpretation/command engine
becomes independent of the parser.
The new "semantic" type is:
type import_status = ImportDefaultBehavior | ImportNeedQualified
type locality = Discharge | Global of import_status
In the process, we found a couple of inconsistencies in the treatment
of the locality status. See bug #8722 and test file LocalDefinition.v.
|
|
Typically instead of [start_proof : ontop:Proof_global.t option -> bla ->
Proof_global.t] we have [start_proof : bla -> Proof_global.pstate] and
the pstate is pushed on the stack by a caller around the
vernacentries/mlg level.
Naming can be a bit awkward, hopefully it can be improved (maybe in a
followup PR).
We can see some patterns appear waiting for nicer combinators, eg in
mlg we often only want to work with the current proof, not the stack.
Behaviour should be similar modulo bugs, let's see what CI says.
|
|
|
|
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
We remove all calls to `Flags.is_program_mode` except one (to compute
the default value of the attribute). Everything else is passed
explicitely, and we remove the special logic in the interpretation loop
to set/unset the flag.
This is especially important since the value of the flag has an impact on
proof modes, so on the separation of parsing and execution phases.
|
|
This is a pre-requisite to use automated formatting tools such as
`ocamlformat`, also, there were quite a few places where the comments
had basically no effect, thus it was confusing for the developer.
p.s: Reading some comments was a lot of fun :)
|
|
`Proof_global` is the main consumer of the flag, which doesn't seem to
belong to the AST as plugins show.
This will allow the vernac AST to be placed in `vernac` indeed.
|
|
|
|
We remove a lot of uses of `evar_map` ref in `vernac`, cleanup step
desirable to progress with EConstr there.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
We make Vernacentries.interp functional wrt state, and thus remove
state-handling from `Future`. Now, a future needs a closure if it
wants to preserve state.
Consequently, `Vernacentries.interp` takes a state, and returns the
new one.
We don't explicitly thread the state in the STM yet, instead, we
recover the state that was used before and pass it explicitly to
`interp`.
I have tested the commit with the files in interactive, but we aware
that some new bugs may appear or old ones be made more apparent.
However, I am confident that this step will improve our understanding
of bugs.
In some cases, we perform a bit more summary wrapping/unwrapping. This
will go away in future commits; informal timings for a full make:
- master:
real 2m11,027s
user 8m30,904s
sys 1m0,000s
- no_futures:
real 2m8,474s
user 8m34,380s
sys 0m59,156s
|
|
|
|
|
|
|
|
This is the continuation of #244, we now deprecate `CErrors.error`,
the single entry point in Coq is `user_err`.
The rationale is to allow for easier grepping, and to ease a future
cleanup of error messages. In particular, we would like to
systematically classify all error messages raised by Coq and be sure
they are properly documented.
We restore the two functions removed in #244 to improve compatibility,
but mark them deprecated.
|
|
|
|
|
|
I hadn't realized that this PR uses OCaml's 4.03 inlined records
feature. I will advocate again for a switch to the latest OCaml stable
version, but meanwhile, let's revert. Sorry for the noise.
This reverts commit 3c47248abc27aa9c64120db30dcb0d7bf945bc70, reversing
changes made to ceb68d1d643ac65f500e0201f61e73cf22e6e2fb.
|
|
We get rid of tuples containing booleans (typically for universe
polymorphism) by replacing them with records.
The previously common idom:
if pi2 kind (* polymorphic *) then ... else ...
becomes:
if kind.polymorphic then ... else ...
To make the construction and destruction of these records lightweight,
the labels of boolean arguments for universe polymorphism are now
usually also called "polymorphic".
|
|
module)
For the moment, there is an Error module in compilers-lib/ocamlbytecomp.cm(x)a
|
|
Originally, rel-context was represented as:
Context.rel_context = Names.Name.t * Constr.t option * Constr.t
Now it is represented as:
Context.Rel.t = LocalAssum of Names.Name.t * Constr.t
| LocalDef of Names.Name.t * Constr.t * Constr.t
Originally, named-context was represented as:
Context.named_context = Names.Id.t * Constr.t option * Constr.t
Now it is represented as:
Context.Named.t = LocalAssum of Names.Id.t * Constr.t
| LocalDef of Names.Id.t * Constr.t * Constr.t
Motivation:
(1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction"
function which looked like this:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [_,None,c] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
Suppose that you do not know about rel-context and named-context.
(that is the case of people who just started to read the source code)
Merlin would tell you that the type of the value you are destructing
by "match" is:
'a * 'b option * Constr.t (* worst-case scenario *)
or
Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *)
To me, this is akin to wearing an opaque veil.
It is hard to figure out the meaning of the values you are looking at.
In particular, it is hard to discover the connection between the value
we are destructing above and the datatypes and functions defined
in the "kernel/context.ml" file.
In this case, the connection is there, but it is not visible
(between the function above and the "Context" module).
------------------------------------------------------------------------
Now consider, what happens when the reader see the same function
presented in the following form:
let test_strict_disjunction n lc =
Array.for_all_i (fun i c ->
match (prod_assum (snd (decompose_prod_n_assum n c))) with
| [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i)
| _ -> false) 0 lc
If the reader haven't seen "LocalAssum" before, (s)he can use Merlin
to jump to the corresponding definition and learn more.
In this case, the connection is there, and it is directly visible
(between the function above and the "Context" module).
(2) Also, if we already have the concepts such as:
- local declaration
- local assumption
- local definition
and we describe these notions meticulously in the Reference Manual,
then it is a real pity not to reinforce the connection
of the actual code with the abstract description we published.
|
|
|
|
|
|
|
|
Side effects are now an opaque data type, called private_constant, you can
only obtain from safe_typing. When add_constant is called on a
definition_entry that contains private constants, they are either
- inlined in the main proof term but not re-checked
- declared globally without re-checking them
As a safety measure, the opaque data type contains a pointer to the
revstruct (an internal field of safe_env that changes every time a new
constant is added), and such pointer is compared with the current value
store in safe_env when the private_constant is inlined. Only when the
comparison is successful the private_constant is not re-checked. Otherwise
else it is. In short, we accept into the kernel private constant only
when they arrive in the very same order and on top of the very same env
they arrived when we fist checked them.
Note: private_constants produced by workers never pass the safety
measure (the revstruct pointer is an Ephemeron). Sending back the
entire revstruct is possible but: 1. we lack a way to quickly compare
two revstructs, 2. it can be large.
|