| Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
Prevent errors when under annotating binders.
|
|
Kernel should be mostly correct, higher levels do random stuff at
times.
|
|
It used to simply remember the normal form of the type of the constructor.
This is somewhat problematic as this is ambiguous in presence of
let-bindings. Rather, we store this data in a fully expanded way, relying
on rel_contexts.
Probably fixes a crapload of bugs with inductive types containing
let-bindings, but it seems that not many were reported in the bugtracker.
|
|
I think the usage looks cleaner this way.
|
|
This work makes it possible to take advantage of a compact
representation for integers in the entire system, as opposed to only
in some reduction machines. It is useful for heavily computational
applications, where even constructing terms is not possible without such
a representation.
Concretely, it replaces part of the retroknowledge machinery with
a primitive construction for integers in terms, and introduces a kind of
FFI which maps constants to operators (on integers). Properties of these
operators are expressed as explicit axioms, whereas they were hidden in
the retroknowledge-based approach.
This has been presented at the Coq workshop and some Coq Working Groups,
and has been used by various groups for STM trace checking,
computational analysis, etc.
Contributions by Guillaume Bertholon and Pierre Roux <Pierre.Roux@onera.fr>
Co-authored-by: Benjamin Grégoire <Benjamin.Gregoire@inria.fr>
Co-authored-by: Vincent Laporte <Vincent.Laporte@fondation-inria.fr>
|
|
|
|
|
|
|
|
The kernel no longer has to read the configure flag, its value can now
be overriden by a coqtop/coqc argument, and more generally is easier to
set from a toplevel (such as the checker).
We also add a `-bytecode-compiler` flag.
Fixes #4607
|
|
|
|
We move the global declaration of that argument to the environment, and reuse
the Global module to handle this flag.
Note that the checker was not using this flag before this patch, and still
doesn't use it. This should probably be fixed in a later patch.
|
|
The upper layers still need a mapping constant -> projection, which is
provided by Recordops.
|
|
This shall eventually allow to use contexts of declarations in the
definition of the "Case" constructor.
Basically, this means that Constr now includes Context and that the
"t" types of Context which were specialized on constr are not defined
in Constr (unfortunately using a heavy boilerplate).
|
|
This brings more compatibility with handling of mutual primitive records
in the kernel.
|
|
This is a first step towards the acceptance of mutual record types in the
kernel.
|
|
This was completely wrong, such a term could not even be type-checked by
the kernel as it was internally using a match construct over a negative
record. They were luckily only used in upper layers, namley printing
and extraction.
Recomputing the projection body might be costly in detyping, but this only
happens when the compatibility flag is turned on, which is not the default.
Such flag is probably bound to disappear anyways.
Extraction should be fixed though so as to define directly primitive
projections, similarly to what has been done in native compute.
|
|
This field was not used inside the kernel and not used in
performance-critical code where caching is essential, so we extrude
the code that computes it out of the kernel.
|
|
This field used to signal that a constant was the compatibility
eta-expansion of a primitive projections, but since a previous cleanup in
the kernel it had become useless.
|
|
|
|
Instead of having the projection data in the constant data we have it
independently in the environment.
|
|
|
|
We defer the computation of the universe quantification to the upper layer,
outside of the kernel.
|
|
We also have to update the checker to deserialize this additional data,
but it is not using it in type-checking yet.
|
|
We more the `recursivity_kind` type to `Declarations`, this indeed
makes sense, and now `Decl_kind` morally lives in `library` as it
should.
|
|
Also use constant_universes_entry instead of a bool flag to indicate
polymorphism in ParameterEntry.
There are a few places where we convert back to ContextSet because
check_univ_decl returns a UContext, this could be improved.
|
|
We do up to `Term` which is the main bulk of the changes.
|
|
This will allow to merge back `Names` with `API.Names`
|
|
|
|
As explained in edf85b9, the original commit that merged the module_body
and module_type_body representations, this was delayed to a later time
assumedly due to OCaml lack of GADTs. Actually, the only thing that was
needed was polymorphic recursion, which has been around already for a
relatively long time (since 3.12).
|
|
The use of template polymorphism in constants was quite limited, as it
only applied to definitions that were exactly inductive types without any
parameter whatsoever. Furthermore, it seems that following the introduction
of polymorphic definitions, the code path enforced regular polymorphism as
soon as the type of a definition was given, which was in practice almost
always.
Removing this feature had no observable effect neither on the test-suite,
nor on any development that we monitor on Travis. I believe it is safe to
assume it was nowadays useless.
|
|
|
|
|
|
|
|
|
|
It stores both universe constraints and subtyping information for
blocks of inductive declarations.
At this stage the there is no inference or checking implemented. The
subtyping information simply encodes equality of levels for the condition of
subtyping.
|
|
|
|
|
|
- constr_substituted and lazy_constr are now in a dedicated kernel/lazyconstr.ml
- the functions that were in declarations.ml (mostly substitution utilities
and hashcons) are now in kernel/declareops.ml
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16250 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
native OCaml code.
Warning: the "retroknowledge" mechanism has not been ported to the native
compiler, because integers and persistent arrays will ultimately be defined as
primitive constructions. Until then, computation on numbers may be faster using
the VM, since it takes advantage of machine integers.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16136 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16099 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16098 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16097 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16071 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15992 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15969 85f007b7-540e-0410-9357-904b9bb8a0f7
|
|
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15804 85f007b7-540e-0410-9357-904b9bb8a0f7
|