| Age | Commit message (Collapse) | Author |
|
We remove sections paths from kernel names. This is a cleanup as most of the times this information was unused. This implies a change in the Kernel API and small user visible changes with regards to tactic qualification. In particular, the removal of "global discharge" implies a large cleanup of code.
Additionally, the change implies that some machinery in `library` and `safe_typing` must now take an `~in_section` parameter, as to provide the information whether a section is open or not.
|
|
As suggested by @mattam82
|
|
|
|
|
|
|
|
Instead of looking into the name-oriented structure we look into the
actual section structures.
Note: together with #8475 this lets us remove UnivNames.add_global_universe.
|
|
|
|
The functions in `Termops.print_*` are meant to be debug printers,
however, they are sometimes used in non-debug code due to a API
confusion.
We thus wrap such functions into an `Internal` module, improve
documentation, and switch users to the right API.
|
|
|
|
After the introduction of `EConstr`, "normalization" has become
unnecessary, we thus deprecate the `nf_*` family of functions.
Test-suite and CI pass after the fix for #8513.
|
|
variables.
We simply normalize the universe variables before comparing them.
|
|
In particular we check if really used for internal debugging purpose
or to display a message to the user. In the latter case, we replace it
(when possible) by a higher-level printer (e.g. printing foo instead
of Top.foo). In the former case, we clarify that the use is a
debugging use.
Still not perfect (see a few FIXME).
|
|
Comes with minor cleanups in exception catching and unnecessary mapi.
|
|
This restores the old behaviour that was printing qualified global names as
a representation of anonymous bound universes, at the cost of a ugly hack.
Ideally this should be handled by the callers, but for the time being the
trade-off is probably OK.
|
|
This is the only information we care about. The printing mechanism is only
called on polymorphic constants, as the naming of global monomorphic levels
is performed in another module.
|
|
We simply declare the bound universes with their user-facing name in the
evarmap and call all printing functions on uninstantiated terms. We had to
tweak the universe name declaring function so that it would work properly
with bound universe variables and handle sections correctly.
This changes the output of polymorphic definitions with unnamed universe
variables. Now they are printed as Var(i) instead of the Module.n uid
that came from their absolute name.
|
|
|
|
branches and return predicate
|
|
|
|
[Dune](https://github.com/ocaml/dune) is a compositional declarative
build system for OCaml. It provides automatic generation of
`version.ml`, `.merlin`, `META`, `opam`, API documentation; install
management; easy integration with external libraries, test runners,
and modular builds.
In particular, Dune uniformly handles components regardless whether
they live in, or out-of-tree. This greatly simplifies cases where a
plugin [or CoqIde] is checked out in the current working copy but then
distributed separately [and vice-versa]. Dune can thus be used as a
more flexible `coq_makefile` replacement.
For now we provide experimental support for a Dune build. In order to
build Coq + the standard library with Dune type:
```
$ make -f Makefile.dune world
```
This PR includes a preliminary, developer-only preview of Dune for
Coq. There is still ongoing work, see
https://github.com/coq/coq/issues/8052 for tracking status towards
full support.
## Technical description.
Dune works out of the box with Coq, once we have fixed some modularity
issues. The main remaining challenge was to support `.vo` files.
As Dune doesn't support custom build rules yet, to properly build
`.vo` files we provide a small helper script `tools/coq_dune.ml`. The
script will scan the Coq library directories and generate the
corresponding rules for `.v -> .vo` and `.ml4 -> .ml` builds. The
script uses `coqdep` as to correctly output the dependencies of
`.v` files. `coq_dune` is akin to `coq_makefile` and should be able to
be used to build Coq projects in the future.
Due to this pitfall, the build process has to proceed in three stages:
1) build `coqdep` and `coq_dune`; 2) generate `dune` files for
`theories` and `plugins`; 3) perform a regular build with all
targets are in scope.
## FAQ
### Why Dune?
Coq has a moderately complex build system and it is not a secret that
many developer-hours have been spent fighting with `make`.
In particular, the current `make`-based system does offer poor support
to verify that the current build rules and variables are coherent, and
requires significant manual, error-prone. Many variables must be
passed by hand, duplicated, etc... Additionally, our make system
offers poor integration with now standard OCaml ecosystem tools such
as `opam`, `ocamlfind` or `odoc`. Another critical point is build
compositionality. Coq is rich in 3rd party contributions, and a big
shortcoming of the current make system is that it cannot be used to
build these projects; requiring us to maintain a custom tool,
`coq_makefile`, with the corresponding cost.
In the past, there has been some efforts to migrate Coq to more
specialized build systems, however these stalled due to a variety of
reasons. Dune, is a declarative, OCaml-specific build tool that is on
the path to become the standard build system for the OCaml ecosystem.
Dune seems to be a good fit for Coq well: it is well-supported, fast,
compositional, and designed for large projects.
### Does Dune replace the make-based build system?
The current, make-based build system is unmodified by this PR and kept
as the default option. However, Dune has the potential
### Is this PR complete? What does it provide?
This PR is ready for developer preview and feedback. The build system
is functional, however, more work is necessary in order to make Dune
the default for Coq.
The main TODOs are tracked at https://github.com/coq/coq/issues/8052
This PR allows developers to use most of the features of Dune today:
- Modular organization of the codebase; each component is built only
against declared dependencies so components are checked for
containment more strictly.
- Hygienic builds; Dune places all artifacts under `_build`.
- Automatic generation of `.install` files, simplified OPAM workflow.
- `utop` support, `-opaque` in developer mode, etc...
- `ml4` files are handled using `coqp5`, a native-code customized
camlp5 executable which brings much faster `ml4 -> ml` processing.
### What dependencies does Dune require?
Dune doesn't depend on any 3rd party package other than the OCaml compiler.
### Some Benchs:
```
$ /usr/bin/time make DUNEOPT="-j 1000" -f Makefile.dune states
59.50user 18.81system 0:29.83elapsed 262%CPU (0avgtext+0avgdata 302996maxresident)k
0inputs+646632outputs (0major+4893811minor)pagefaults 0swaps
$ /usr/bin/time sh -c "./configure -local -native-compiler no && make -j states"
88.21user 23.65system 0:32.96elapsed 339%CPU (0avgtext+0avgdata 304992maxresident)k
0inputs+1051680outputs (0major+5300680minor)pagefaults 0swaps
```
|
|
More precisely: the lambda-let-expanded canonical form of branches and
return predicate is considered as part of the structure of a "match"
and is preserved.
|
|
Internal lemmas are inlined in obligations bodies, hence their universes
have to be declared with the obligations themselves. ~sideff:true was
not including the side effects universes and constraints in that case.
|
|
Keep the universe_levels_of_constr function inside typeops, not
exported.
|
|
The upper layers still need a mapping constant -> projection, which is
provided by Recordops.
|
|
|
|
While we were adding a new field into `QuestionMark`, we
decided to go ahead and refactor the constructor to hold
an actual record. This record now holds the name, obligations, and
whether the evar represents a missing record field.
This is used to provide better error messages on missing record
fields.
|
|
|
|
|
|
|
|
(Universes and Evd)
|
|
This shall eventually allow to use contexts of declarations in the
definition of the "Case" constructor.
Basically, this means that Constr now includes Context and that the
"t" types of Context which were specialized on constr are not defined
in Constr (unfortunately using a heavy boilerplate).
|
|
|
|
|
|
constants
|
|
|
|
Apparently it was not useful. I don't remember what I was thinking
when I added it.
|
|
|
|
|
|
The test isn't quite the one in #7421 because that use of algebraic
universes is wrong.
|
|
reference was defined as Ident or Qualid, but the qualid type already
permits empty paths. So we had effectively two representations for
unqualified names, that were not seen as equal by eq_reference.
We remove the reference type and replace its uses by qualid.
|
|
When restricting an evar with candidates, raise an exception if this
restriction would leave the evar without candidates, i.e. unsolvable.
- evarutil: mark restricted evars as "cleared"
They would otherwise escape being catched by the [advance] function
of clenv, and result in dangling evars not being registered to the shelf.
- engine: restrict_evar marks it cleared, update the future goals
We make the new evar a future goal and remove the old one.
If we did nothing, [unshelve tac] would work correctly as it
uses [Proofview.advance] to find the shelved goals, going through
the cleared evar. But [Unshelve] would fail as it expects only
undefined evars on the shelf and throws away the defined ones.
|
|
Avoid adding the same unification problem twice, module evar instantiation.
|
|
- move_location to proofs/logic.
- intro_pattern_naming to Namegen.
|
|
|
|
|
|
|
|
|
|
Actually all the new_ functions are in evarutil still
|
|
|
|
|