| Age | Commit message (Collapse) | Author |
|
|
|
In a Meta := Evar unification problem and the Meta is bound to a
(named) binder, and the Evar is a GoalEvar, we set the source of the
evar to be the one of the Meta.
|
|
This seems like a recurring pattern, and IMO makes a bit better API.
We also remove `merge_universe_subst` as it is not needed so far, as
we were creating stale `evar_map`s just for this purpose.
|
|
This corresponds more naturally to the use we make of them, as we don't need
fast indexation but we instead keep pushing terms on top of them.
|
|
Add headers to a few files which were missing them.
|
|
It was virtually unused except in ssr, and there is no reason to clutter
the kernel with irrelevant code.
Fixes #9390: What is the purpose of the function "kind_of_type"?
|
|
so for instance
~~~coq
Set Printing All. Set Printing Universes.
Polymorphic Inductive foo@{u v|u<=v} : Type@{u}:= .
Lemma bla@{u v|u < v} : foo@{u v} -> False.
Proof. induction 1. Qed.
~~~
works.
|
|
Namely, Evd.evar_env and Evd.evar_filtered_env now take an additional
environment instead of querying the imperative global one. We percolate
this change as higher up as possible.
|
|
We also remove trailing whitespace.
Script used:
```bash
for i in `find . -name '*.ml' -or -name '*.mli' -or -name '*.mlg'`; do expand -i "$i" | sponge "$i"; sed -e's/[[:space:]]*$//' -i.bak "$i"; done
```
|
|
demote_seff_univs
Reviewed-by: ejgallego
Reviewed-by: ppedrot
|
|
It's only called with extend:false from inside UState so we don't need
to expose it.
Not having to look at the whole `merge` function will hopefully help
those trying to understand side effects.
|
|
This was broken by change 6608f64.
|
|
This could be Prop (for compat with usual Coq), Set (for HoTT),
or actually an arbitrary "i".
Take lower bound of universes into account in pretyping/engine
Reinstate proper elaboration of SProp <= l constraints:
replacing is_small with equality with lbound is _not_ semantics preserving!
lbound = Set
Elaborate template polymorphic inductives with lower bound Prop
This will make more constraints explicit
Check univ constraints with Prop as lower bound for template inductives
Restrict template polymorphic universes to those not bounded from below
Fixes #9294
fix suggested by Matthieu
Try second fix suggested by Matthieu
Take care of modifying elaboration for record declarations as well.
Rebase and export functions for debug
Remove exported functions used while debugging
Add a new typing flag "check_template" and option "-no-template-checl"
This parameterizes the new criterion on template polymorphic inductives
to allow bypassing it (necessary for backward compatibility).
Update checker to the new typing flags structure
Switch on the new template_check flag to allow old unsafe behavior in
indTyping.
This is the only change of code really impacting the kernel, together
with the commit implementing unbounded from below and parameterization
by the lower bound on universes.
Add deprecated option `Unset Template Check` allowing to make proof
scripts work with both 8.9 and 8.10 for a while
Fix `Template Check` option name and test it
Add `Unset Template Check` to Coq89.v
Cooking of inductives and template-check tests
Cleanup test-suite file for template check / universes(template) flags
cookind tests
Move test of `Unset Template Check` to the failure/ dir, but comment it
for now
Template test-suite test explanation
Overlays for PR 9918
Overlay for paramcoq
Add overlay for fiat_parsers (-no-template-check)
Add overlay for fiat_crypto_legacy
Update fiat-crypto legacy overlay
Now it points at the version that I plan on merging; I am hoping that doing this will guard against mistakes by adding an extra check that the target tested by Coq's CI on this branch works with the change I made.
Remove overlay that should no longer be necessary
The setting in the compat file should handle it
Remove now-merged fiat-crypto-legacy overlay
Update `Print Assumptions` to reflect the typing flag for template checking
Fix About and Print Assumptions for template poly, giving info on which
variables are actually polymorphic
Fix pretty printing to print global universe levels properly
Fix printing of template polymorphic universes
Fix pretty printing for template polymorphism on no universe
Fix interaction of template check and universes(template) flag
Fix indTyping to really check if there is any point in polymorphism: the
conclusion sort should be parameterized over at least one local universe
Indtyping fixes for template polymorphic Props
Allow explicit template polymorphism again
Adapt to new indTyping interface
Handle the case of template-polymorphic on no universes
correctly (morally Type0m univ represented as Prop).
Fix check of meaningfullness of template polymorphism in the kernel.
It is now done w.r.t the min_univ, the minimal universe inferred for the
inductive/record type, independently of the user-written annotation
which must only be larger than min_univ. This preserves compatibility
with UniMath and template-polymorphism as it has been implemented up-to
now.
Comment on identity non-template-polymorphism
Remove incorrect universes(template) attributes from ssr
simpl_fun can be meaningfully template-poly, as well as
pred_key (although the use is debatable: it could just
as well be in Prop).
Move `fun_of_simpl` coercion declaration out of section to respect
uniform inheritance
Remove incorrect uses of #[universes(template)] from the stdlib
Extraction of micromega changes due to moving an ind decl out of a section
Remove incorrect uses of #[universes(template)] from plugins
Fix test-suite files, removing incorrect #[universes(template)] attributes
Remove incorrect #[universes(template)] attributes in test-suite
Fix test-suite
Remove overlays as they have been merged upstream.
|
|
|
|
|
|
We move the role data into the evarmap instead.
|
|
Ack-by: herbelin
Reviewed-by: maximedenes
Ack-by: ppedrot
|
|
|
|
|
|
Some of them are significant so presumably it will take a bit of
effort to fix overlays.
I left out the removal of `nf_enter` for now as MTac2 needs some
serious porting in order to avoid it.
|
|
Note currently it's impossible to define inductives in SProp because
indtypes.ml and the pretyper aren't fully plugged.
|
|
|
|
Ack-by: gares
Ack-by: herbelin
Ack-by: mattam82
Ack-by: ppedrot
|
|
I think the usage looks cleaner this way.
|
|
|
|
Named evar_abstract_arguments, this field indicates if the evar
arguments corresponding to certain hypothesis can be immitated during
inversion or not. If the argument comes from an abstraction (the evar
was of arrow type), then imitation is disallowed as it gives unnatural
solutions, and lambda abstraction is preferred.
|
|
|
|
|
|
This is a pre-requisite to use automated formatting tools such as
`ocamlformat`, also, there were quite a few places where the comments
had basically no effect, thus it was confusing for the developer.
p.s: Reading some comments was a lot of fun :)
|
|
|
|
for the determination of evars that can be turned into obligations.
|
|
This avoids all the side effects associated with the manipulation of an
unresolvable flag. In the new design:
- The evar_map stores a set of evars that are candidates for typeclass
resolution, which can be retrieved and set.
We maintain the invariant that it always contains only undefined
evars.
- At the creation time of an evar (new_evar), we classify it as a
potential candidate of resolution.
- This uses a hook to test if the conclusion ends in a typeclass
application. (hook set in typeclasses.ml)
- This is an approximation if the conclusion is an existential (i.e.
not yet determined). In that case we register the evar as
potentially a typeclass instance, and later phases must consider
that case, dropping the evar if it is not a typeclass.
- One can pass the ~typeclass_candidate:false flag to new_evar to
prevent classification entirely. Typically this is for new goals
which should not ever be considered to be typeclass resolution
candidates.
- One can mark a subset of evars unresolvable later if
needed. Typically for clausenv, and marking future goals as
unresolvable even if they are typeclass goals. For clausenv for
example, after turing metas into evars we first (optionally) try a
typeclass resolution on the newly created evars and only then mark
the remaining newly created evars as subgoals. The intent of the
code looks clearer now.
This should prevent keeping testing if undefined evars are classes
all the time and crawling large sets when no typeclasses are present.
- Typeclass candidate evars stay candidates through
restriction/evar-evar solutions.
- Evd.add uses ~typeclass_candidate:false to avoid recomputing if the new
evar is a candidate. There's a deficiency in the API, in most use
cases of Evd.add we should rather use a:
`Evd.update_evar_info : evar_map -> Evar.t -> (evar_info -> evar_info)
-> evar_map`
Usually it is only about nf_evar'ing the evar_info's contents, which
doesn't change the evar candidate status.
- Typeclass resolution can now handle the set of candidates
functionally: it always starts from the set of candidates (and not the
whole undefined_map) and a filter on it, potentially splitting it in
connected components, does proof search for each component in an
evar_map with an empty set of typeclass evars (allowing clean
reentrancy), then reinstates the potential remaining unsolved
components and filtered out typeclass evars at the end of
resolution.
This means no more marking of resolvability/unresolvability
everywhere, and hopefully a more efficient implementation in general.
- This is on top of the cleanup of evar_info's currently but can
be made independent.
[typeclasses] Fix cases.ml: none of the new_evars should be typeclass candidates
Solve bug in inheritance of flags in evar-evar solutions.
Renaming unresolvable to typeclass_candidate (positive) and fix maybe_typeclass_hook
|
|
|
|
|
|
branches and return predicate
|
|
More precisely: the lambda-let-expanded canonical form of branches and
return predicate is considered as part of the structure of a "match"
and is preserved.
|
|
Internal lemmas are inlined in obligations bodies, hence their universes
have to be declared with the obligations themselves. ~sideff:true was
not including the side effects universes and constraints in that case.
|
|
|
|
(Universes and Evd)
|
|
|
|
|
|
|
|
|
|
The test isn't quite the one in #7421 because that use of algebraic
universes is wrong.
|
|
When restricting an evar with candidates, raise an exception if this
restriction would leave the evar without candidates, i.e. unsolvable.
- evarutil: mark restricted evars as "cleared"
They would otherwise escape being catched by the [advance] function
of clenv, and result in dangling evars not being registered to the shelf.
- engine: restrict_evar marks it cleared, update the future goals
We make the new evar a future goal and remove the old one.
If we did nothing, [unshelve tac] would work correctly as it
uses [Proofview.advance] to find the shelved goals, going through
the cleared evar. But [Unshelve] would fail as it expects only
undefined evars on the shelf and throws away the defined ones.
|
|
Avoid adding the same unification problem twice, module evar instantiation.
|
|
|
|
|
|
|
|
|