aboutsummaryrefslogtreecommitdiff
path: root/theories
diff options
context:
space:
mode:
Diffstat (limited to 'theories')
-rw-r--r--theories/Reals/Cauchy/ConstructiveRcomplete.v26
1 files changed, 5 insertions, 21 deletions
diff --git a/theories/Reals/Cauchy/ConstructiveRcomplete.v b/theories/Reals/Cauchy/ConstructiveRcomplete.v
index 38eb9df0ea..c2b60e6478 100644
--- a/theories/Reals/Cauchy/ConstructiveRcomplete.v
+++ b/theories/Reals/Cauchy/ConstructiveRcomplete.v
@@ -690,20 +690,6 @@ Proof.
exists x. exact c.
Qed.
-(* ToDO: Belongs into sumbool.v *)
-Section connectives.
-
- Variables A B : Prop.
-
- Hypothesis H1 : {A} + {~A}.
- Hypothesis H2 : {B} + {~B}.
-
- Definition sumbool_or_not_or : {A \/ B} + {~(A \/ B)}.
- case H1; case H2; tauto.
- Defined.
-
-End connectives.
-
Lemma Qnot_le_iff_lt: forall x y : Q,
~ (x <= y)%Q <-> (y < x)%Q.
Proof.
@@ -740,13 +726,11 @@ Proof.
clear maj. right. exists n.
apply H0.
- clear H0 H. intro n.
- apply sumbool_or_not_or.
- + destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq b n - seq a n)%Q).
- * left; assumption.
- * right; apply Qle_not_lt; assumption.
- + destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq d n - seq c n)%Q).
- * left; assumption.
- * right; apply Qle_not_lt; assumption.
+ destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq b n - seq a n)%Q) as [H1|H1].
+ + now left; left.
+ + destruct (Qlt_le_dec (2 * 2 ^ n)%Q (seq d n - seq c n)%Q) as [H2|H2].
+ * now left; right.
+ * now right; intros [H3|H3]; apply Qle_not_lt with (2 := H3).
Qed.
Definition CRealConstructive : ConstructiveReals