diff options
Diffstat (limited to 'theories/micromega/ZifyInst.v')
| -rw-r--r-- | theories/micromega/ZifyInst.v | 59 |
1 files changed, 20 insertions, 39 deletions
diff --git a/theories/micromega/ZifyInst.v b/theories/micromega/ZifyInst.v index 9881e73f76..8dee70be45 100644 --- a/theories/micromega/ZifyInst.v +++ b/theories/micromega/ZifyInst.v @@ -307,15 +307,15 @@ Instance Op_N_mul : BinOp N.mul := Add Zify BinOp Op_N_mul. Instance Op_N_sub : BinOp N.sub := - {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max|}. + {| TBOp := fun x y => Z.max 0 (x - y) ; TBOpInj := N2Z.inj_sub_max |}. Add Zify BinOp Op_N_sub. Instance Op_N_div : BinOp N.div := - {| TBOp := Z.div ; TBOpInj := N2Z.inj_div|}. + {| TBOp := Z.div ; TBOpInj := N2Z.inj_div |}. Add Zify BinOp Op_N_div. Instance Op_N_mod : BinOp N.modulo := - {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem|}. + {| TBOp := Z.rem ; TBOpInj := N2Z.inj_rem |}. Add Zify BinOp Op_N_mod. Instance Op_N_pred : UnOp N.pred := @@ -332,19 +332,19 @@ Add Zify UnOp Op_N_succ. (* zify_Z_rel *) Instance Op_Z_ge : BinRel Z.ge := - {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y)|}. + {| TR := Z.ge ; TRInj := fun x y => iff_refl (x>= y) |}. Add Zify BinRel Op_Z_ge. Instance Op_Z_lt : BinRel Z.lt := - {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y)|}. + {| TR := Z.lt ; TRInj := fun x y => iff_refl (x < y) |}. Add Zify BinRel Op_Z_lt. Instance Op_Z_gt : BinRel Z.gt := - {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y)|}. + {| TR := Z.gt ;TRInj := fun x y => iff_refl (x > y) |}. Add Zify BinRel Op_Z_gt. Instance Op_Z_le : BinRel Z.le := - {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y)|}. + {| TR := Z.le ;TRInj := fun x y => iff_refl (x <= y) |}. Add Zify BinRel Op_Z_le. Instance Op_eqZ : BinRel (@eq Z) := @@ -460,7 +460,7 @@ Add Zify UnOp Op_Z_to_nat. (** Specification of derived operators over Z *) Instance ZmaxSpec : BinOpSpec Z.max := - {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec|}. + {| BPred := fun n m r => n < m /\ r = m \/ m <= n /\ r = n ; BSpec := Z.max_spec |}. Add Zify BinOpSpec ZmaxSpec. Instance ZminSpec : BinOpSpec Z.min := @@ -470,49 +470,30 @@ Add Zify BinOpSpec ZminSpec. Instance ZsgnSpec : UnOpSpec Z.sgn := {| UPred := fun n r : Z => 0 < n /\ r = 1 \/ 0 = n /\ r = 0 \/ n < 0 /\ r = - (1) ; - USpec := Z.sgn_spec|}. + USpec := Z.sgn_spec |}. Add Zify UnOpSpec ZsgnSpec. Instance ZabsSpec : UnOpSpec Z.abs := {| UPred := fun n r: Z => 0 <= n /\ r = n \/ n < 0 /\ r = - n ; - USpec := Z.abs_spec|}. + USpec := Z.abs_spec |}. Add Zify UnOpSpec ZabsSpec. (** Saturate positivity constraints *) -Instance SatProd : Saturate Z.mul := - {| - PArg1 := fun x => 0 <= x; - PArg2 := fun y => 0 <= y; - PRes := fun r => 0 <= r; - SatOk := Z.mul_nonneg_nonneg - |}. -Add Zify Saturate SatProd. - -Instance SatProdPos : Saturate Z.mul := +Instance SatPowPos : Saturate Z.pow := {| PArg1 := fun x => 0 < x; - PArg2 := fun y => 0 < y; + PArg2 := fun y => 0 <= y; PRes := fun r => 0 < r; - SatOk := Z.mul_pos_pos + SatOk := Z.pow_pos_nonneg |}. -Add Zify Saturate SatProdPos. - -Lemma pow_pos_strict : - forall a b, - 0 < a -> 0 < b -> 0 < a ^ b. -Proof. - intros. - apply Z.pow_pos_nonneg; auto. - apply Z.lt_le_incl;auto. -Qed. - +Add Zify Saturate SatPowPos. -Instance SatPowPos : Saturate Z.pow := +Instance SatPowNonneg : Saturate Z.pow := {| - PArg1 := fun x => 0 < x; - PArg2 := fun y => 0 < y; - PRes := fun r => 0 < r; - SatOk := pow_pos_strict + PArg1 := fun x => 0 <= x; + PArg2 := fun y => True; + PRes := fun r => 0 <= r; + SatOk := fun a b Ha _ => @Z.pow_nonneg a b Ha |}. -Add Zify Saturate SatPowPos. +Add Zify Saturate SatPowNonneg. |
