aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/Int63/Int63.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/Int63/Int63.v')
-rw-r--r--theories/Numbers/Cyclic/Int63/Int63.v3
1 files changed, 1 insertions, 2 deletions
diff --git a/theories/Numbers/Cyclic/Int63/Int63.v b/theories/Numbers/Cyclic/Int63/Int63.v
index a3ebe67325..d3fac82d09 100644
--- a/theories/Numbers/Cyclic/Int63/Int63.v
+++ b/theories/Numbers/Cyclic/Int63/Int63.v
@@ -1428,7 +1428,7 @@ Proof.
assert (Hp3: (0 < Φ (WW ih il))).
{simpl zn2z_to_Z;apply Z.lt_le_trans with (φ ih * wB)%Z; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
- refine (Z.lt_le_trans _ _ _ _ Hih); auto with zarith. }
+ }
cbv zeta.
case_eq (ih <? j)%int63;intros Heq.
rewrite -> ltb_spec in Heq.
@@ -1465,7 +1465,6 @@ Proof.
apply Hrec; rewrite H; clear u H.
assert (Hf1: 0 <= Φ (WW ih il) / φ j) by (apply Z_div_pos; auto with zarith).
case (Zle_lt_or_eq 1 (φ j)); auto with zarith; intros Hf2.
- 2: contradict Heq0; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; auto with zarith.
split.
replace (φ j + Φ (WW ih il) / φ j)%Z with
(1 * 2 + ((φ j - 2) + Φ (WW ih il) / φ j)) by lia.