aboutsummaryrefslogtreecommitdiff
path: root/test-suite/success/Omega.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/Omega.v')
-rw-r--r--test-suite/success/Omega.v29
1 files changed, 14 insertions, 15 deletions
diff --git a/test-suite/success/Omega.v b/test-suite/success/Omega.v
index 5e0f90d59b..a530c34297 100644
--- a/test-suite/success/Omega.v
+++ b/test-suite/success/Omega.v
@@ -1,5 +1,4 @@
-
-Require Import Omega.
+Require Import Lia ZArith.
(* Submitted by Xavier Urbain 18 Jan 2002 *)
@@ -7,14 +6,14 @@ Lemma lem1 :
forall x y : Z, (-5 < x < 5)%Z -> (-5 < y)%Z -> (-5 < x + y + 5)%Z.
Proof.
intros x y.
- omega.
+ lia.
Qed.
(* Proposed by Pierre Crégut *)
Lemma lem2 : forall x : Z, (x < 4)%Z -> (x > 2)%Z -> x = 3%Z.
intro.
- omega.
+ lia.
Qed.
(* Proposed by Jean-Christophe Filliâtre *)
@@ -22,7 +21,7 @@ Qed.
Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z.
Proof.
intros.
- omega.
+ lia.
Qed.
(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
@@ -32,7 +31,7 @@ Section A.
Variable x y : Z.
Hypothesis H : (x > y)%Z.
Lemma lem4 : (x > y)%Z.
- omega.
+ lia.
Qed.
End A.
@@ -48,7 +47,7 @@ Hypothesis L : (R1 >= 0)%Z -> S2 = S1.
Hypothesis M : (H <= 2 * S)%Z.
Hypothesis N : (S < H)%Z.
Lemma lem5 : (H > 0)%Z.
- omega.
+ lia.
Qed.
End B.
@@ -56,11 +55,11 @@ End B.
Lemma lem6 :
forall (A : Set) (i : Z), (i <= 0)%Z -> ((i <= 0)%Z -> A) -> (i <= 0)%Z.
intros.
- omega.
+ lia.
Qed.
(* Adapted from an example in Nijmegen/FTA/ftc/RefSeparating (Oct 2002) *)
-Require Import Omega.
+Require Import Lia.
Section C.
Parameter g : forall m : nat, m <> 0 -> Prop.
Parameter f : forall (m : nat) (H : m <> 0), g m H.
@@ -68,21 +67,21 @@ Variable n : nat.
Variable ap_n : n <> 0.
Let delta := f n ap_n.
Lemma lem7 : n = n.
- omega.
+ lia.
Qed.
End C.
(* Problem of dependencies *)
-Require Import Omega.
+Require Import Lia.
Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0.
-intros; omega.
+intros; lia.
Qed.
(* Bug that what caused by the use of intro_using in Omega *)
-Require Import Omega.
+Require Import Lia.
Lemma lem9 :
forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p.
-intros; omega.
+intros; lia.
Qed.
(* Check that the interpretation of mult on nat enforces its positivity *)
@@ -90,5 +89,5 @@ Qed.
(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z" *)
Lemma lem10 : forall n m:nat, le n (plus n (mult n m)).
Proof.
-intros; zify; omega.
+intros; lia.
Qed.