aboutsummaryrefslogtreecommitdiff
path: root/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v')
-rw-r--r--test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v33
1 files changed, 17 insertions, 16 deletions
diff --git a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v
index 69ed621877..ae71ddfd1d 100644
--- a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v
+++ b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v
@@ -19,6 +19,7 @@
Require Export ZArith.
Require Export ZArithRing.
+Require Import Lia.
Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d.
@@ -140,35 +141,35 @@ Qed.
Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0.
Proof.
intros.
- omega.
+ lia.
Qed.
Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0.
Proof.
intros.
- omega.
+ lia.
Qed.
Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n).
Proof.
intros.
- omega.
+ lia.
Qed.
Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0.
Proof.
- intros; omega.
+ intros; lia.
Qed.
Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0.
Proof.
- intros; omega.
+ intros; lia.
Qed.
Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n.
Proof.
intros.
- omega.
+ lia.
Qed.
@@ -573,7 +574,7 @@ Qed.
-Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith.
+Local Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith.
Lemma Zle_reg_mult_l :
@@ -1158,7 +1159,7 @@ Proof.
intros [| p| p]; intros; [ Falsum | constructor | constructor ].
Qed.
-Hint Resolve square_pos: zarith.
+Local Hint Resolve square_pos: zarith.
(*###########################################################################*)
(** Properties of positive numbers, mapping between Z and nat *)
@@ -1414,13 +1415,13 @@ Qed.
Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n.
Proof.
intros.
- omega.
+ lia.
Qed.
Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n.
Proof.
intros.
- omega.
+ lia.
Qed.
@@ -1501,7 +1502,7 @@ Proof.
[ replace (Z.abs_nat x) with (Z.abs_nat (x - 1 + 1));
[ idtac | apply f_equal with Z; auto with zarith ];
rewrite absolu_plus;
- [ unfold Z.abs_nat at 2, nat_of_P, Pos.iter_op in |- *; omega
+ [ unfold Z.abs_nat at 2, nat_of_P, Pos.iter_op in |- *; lia
| auto with zarith
| intro; discriminate ]
| rewrite <- H1; reflexivity ].
@@ -1985,7 +1986,7 @@ Proof.
intros [| p| p] Hp; trivial.
Qed.
-Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8
+Local Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8
Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17
Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26
Zsgn_27: zarith.
@@ -2388,7 +2389,7 @@ Proof.
intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos.
Qed.
-Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9
+Local Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9
Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith.
@@ -2949,7 +2950,7 @@ Proof.
ring.
Qed.
-Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith.
+Local Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith.
(*###########################################################################*)
(** Properties of Arity *)
@@ -3020,7 +3021,7 @@ Proof.
Flip.
Qed.
-Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith.
+Local Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith.
(*###########################################################################*)
(** Properties of Zpower *)
@@ -3038,4 +3039,4 @@ Proof.
ring.
Qed.
-Hint Resolve Zpower_1 Zpower_2: zarith.
+Local Hint Resolve Zpower_1 Zpower_2: zarith.