From mathcomp Require Import ssreflect. From Coq Require Export ssrfun. From mathcomp Require Export ssrnotations. (******************************************************************************) (* Local additions: *) (* void == a notation for the Empty_set type of the standard library. *) (* of_void T == the canonical injection void -> T. *) (******************************************************************************) Lemma Some_inj {T : nonPropType} : injective (@Some T). Proof. by move=> x y []. Qed. Notation void := Empty_set. Definition of_void T (x : void) : T := match x with end. Lemma of_voidK T : pcancel (of_void T) [fun _ => None]. Proof. by case. Qed. Lemma inj_compr A B C (f : B -> A) (h : C -> B) : injective (f \o h) -> injective h. Proof. by move=> fh_inj x y /(congr1 f) /fh_inj. Qed. Definition injective2 (rT aT1 aT2 : Type) (f : aT1 -> aT2 -> rT) := forall (x1 x2 : aT1) (y1 y2 : aT2), f x1 y1 = f x2 y2 -> (x1 = x2) * (y1 = y2). Arguments injective2 [rT aT1 aT2] f.