From mathcomp Require Import ssreflect ssrfun. From Coq Require Export ssrbool. (******************************************************************************) (* Local additions: *) (* {pred T} == a type convertible to pred T but that presents the *) (* pred_sort coercion class. *) (* PredType toP == the predType structure for toP : A -> pred T. *) (* relpre f r == the preimage of r by f, simplifying to r (f x) (f y). *) (* --> These will become part of the core SSReflect library with Coq 8.11. *) (* This file also anticipates a v8.11 change in the definition of simpl_pred *) (* to T -> simpl_pred T. This change ensures that inE expands the definition *) (* of r : simpl_rel along with the \in, when rewriting in y \in r x. *) (******************************************************************************) Notation "{ 'pred' T }" := (pred_sort (predPredType T)) (at level 0, format "{ 'pred' T }") : type_scope. Lemma simpl_pred_sortE T (p : pred T) : (SimplPred p : {pred T}) =1 p. Proof. by []. Qed. Definition inE := (inE, simpl_pred_sortE). Definition PredType : forall T pT, (pT -> pred T) -> predType T. exact PredType || exact mkPredType. Defined. Arguments PredType [T pT] toP. Definition simpl_rel T := T -> simpl_pred T. Definition SimplRel {T} (r : rel T) : simpl_rel T := fun x => SimplPred (r x). Coercion rel_of_simpl_rel T (sr : simpl_rel T) : rel T := sr. Arguments rel_of_simpl_rel {T} sr x / y : rename. Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B)) (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : T => E%B)) (at level 0, x ident, y ident, only parsing) : fun_scope. Notation "[ 'rel' x y 'in' A & B | E ]" := [rel x y | (x \in A) && (y \in B) && E] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A & B ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A ] ']'") : fun_scope. Notation xrelpre := (fun f (r : rel _) x y => r (f x) (f y)). Definition relpre {T rT} (f : T -> rT) (r : rel rT) := [rel x y | r (f x) (f y)].