From mathcomp Require Import ssreflect ssrfun. From Coq Require Export ssrbool. (******************************************************************************) (* Local additions: *) (* {pred T} == a type convertible to pred T but that presents the *) (* pred_sort coercion class. *) (* PredType toP == the predType structure for toP : A -> pred T. *) (* relpre f r == the preimage of r by f, simplifying to r (f x) (f y). *) (* --> These will become part of the core SSReflect library with Coq 8.11. *) (* This file also anticipates a v8.11 change in the definition of simpl_pred *) (* to T -> simpl_pred T. This change ensures that inE expands the definition *) (* of r : simpl_rel along with the \in, when rewriting in y \in r x. *) (* *) (* This file also anticipates v8.13 additions as well as a generalization in *) (* the statments of `homoRL_in`, `homoLR_in`, `homo_mono_in`, `monoLR_in`, *) (* monoRL_in, and can_mono_in. *) (******************************************************************************) (******************) (* v8.11 addtions *) (******************) Notation "{ 'pred' T }" := (pred_sort (predPredType T)) (at level 0, format "{ 'pred' T }") : type_scope. Lemma simpl_pred_sortE T (p : pred T) : (SimplPred p : {pred T}) =1 p. Proof. by []. Qed. Definition inE := (inE, simpl_pred_sortE). Definition PredType : forall T pT, (pT -> pred T) -> predType T. exact PredType || exact mkPredType. Defined. Arguments PredType [T pT] toP. Definition simpl_rel T := T -> simpl_pred T. Definition SimplRel {T} (r : rel T) : simpl_rel T := fun x => SimplPred (r x). Coercion rel_of_simpl_rel T (sr : simpl_rel T) : rel T := sr. Arguments rel_of_simpl_rel {T} sr x / y : rename. (* Required to avoid an incompatible format warning with coq-8.12 *) Reserved Notation "[ 'rel' x y : T | E ]" (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y : T | '/ ' E ] ']'"). Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B)) (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : T => E%B)) (only parsing) : fun_scope. Notation "[ 'rel' x y 'in' A & B | E ]" := [rel x y | (x \in A) && (y \in B) && E] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A & B ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'") : fun_scope. Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] (at level 0, x ident, y ident, format "'[hv' [ 'rel' x y 'in' A ] ']'") : fun_scope. Notation xrelpre := (fun f (r : rel _) x y => r (f x) (f y)). Definition relpre {T rT} (f : T -> rT) (r : rel rT) := [rel x y | r (f x) (f y)]. (******************) (* v8.13 addtions *) (******************) Section HomoMonoMorphismFlip. Variables (aT rT : Type) (aR : rel aT) (rR : rel rT) (f : aT -> rT). Variable (aD aD' : {pred aT}). Lemma homo_sym : {homo f : x y / aR x y >-> rR x y} -> {homo f : y x / aR x y >-> rR x y}. Proof. by move=> fR y x; apply: fR. Qed. Lemma mono_sym : {mono f : x y / aR x y >-> rR x y} -> {mono f : y x / aR x y >-> rR x y}. Proof. by move=> fR y x; apply: fR. Qed. Lemma homo_sym_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in aD &, {homo f : y x / aR x y >-> rR x y}}. Proof. by move=> fR y x yD xD; apply: fR. Qed. Lemma mono_sym_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in aD &, {mono f : y x / aR x y >-> rR x y}}. Proof. by move=> fR y x yD xD; apply: fR. Qed. Lemma homo_sym_in11 : {in aD & aD', {homo f : x y / aR x y >-> rR x y}} -> {in aD' & aD, {homo f : y x / aR x y >-> rR x y}}. Proof. by move=> fR y x yD xD; apply: fR. Qed. Lemma mono_sym_in11 : {in aD & aD', {mono f : x y / aR x y >-> rR x y}} -> {in aD' & aD, {mono f : y x / aR x y >-> rR x y}}. Proof. by move=> fR y x yD xD; apply: fR. Qed. End HomoMonoMorphismFlip. Arguments homo_sym {aT rT} [aR rR f]. Arguments mono_sym {aT rT} [aR rR f]. Arguments homo_sym_in {aT rT} [aR rR f aD]. Arguments mono_sym_in {aT rT} [aR rR f aD]. Arguments homo_sym_in11 {aT rT} [aR rR f aD aD']. Arguments mono_sym_in11 {aT rT} [aR rR f aD aD']. (******************) (* v8.14 addtions *) (******************) Section LocalGlobal. Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0). Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0). Variables T1 T2 T3 : predArgType. Variables (D1 : {pred T1}) (D2 : {pred T2}). Variables (f : T1 -> T2) (h : T3). Variable Q1 : (T1 -> T2) -> T1 -> Prop. Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop. Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop. Let allQ1 f'' := {all1 Q1 f''}. Let allQ1l f'' h' := {all1 Q1l f'' h'}. Let allQ2 f'' := {all2 Q2 f''}. Lemma in_on1P : {in D1, {on D2, allQ1 f}} <-> {in [pred x in D1 | f x \in D2], allQ1 f}. Proof. split => allf x; have := allf x; rewrite inE => Q1f; first by case/andP. by move=> ? ?; apply: Q1f; apply/andP. Qed. Lemma in_on1lP : {in D1, {on D2, allQ1l f & h}} <-> {in [pred x in D1 | f x \in D2], allQ1l f h}. Proof. split => allf x; have := allf x; rewrite inE => Q1f; first by case/andP. by move=> ? ?; apply: Q1f; apply/andP. Qed. Lemma in_on2P : {in D1 &, {on D2 &, allQ2 f}} <-> {in [pred x in D1 | f x \in D2] &, allQ2 f}. Proof. split => allf x y; have := allf x y; rewrite !inE => Q2f. by move=> /andP[? ?] /andP[? ?]; apply: Q2f. by move=> ? ? ? ?; apply: Q2f; apply/andP. Qed. Lemma on1W_in : {in D1, allQ1 f} -> {in D1, {on D2, allQ1 f}}. Proof. by move=> D1f ? /D1f. Qed. Lemma on1lW_in : {in D1, allQ1l f h} -> {in D1, {on D2, allQ1l f & h}}. Proof. by move=> D1f ? /D1f. Qed. Lemma on2W_in : {in D1 &, allQ2 f} -> {in D1 &, {on D2 &, allQ2 f}}. Proof. by move=> D1f ? ? ? ? ? ?; apply: D1f. Qed. Lemma in_on1W : allQ1 f -> {in D1, {on D2, allQ1 f}}. Proof. by move=> allf ? ? ?; apply: allf. Qed. Lemma in_on1lW : allQ1l f h -> {in D1, {on D2, allQ1l f & h}}. Proof. by move=> allf ? ? ?; apply: allf. Qed. Lemma in_on2W : allQ2 f -> {in D1 &, {on D2 &, allQ2 f}}. Proof. by move=> allf ? ? ? ? ? ?; apply: allf. Qed. Lemma on1S : (forall x, f x \in D2) -> {on D2, allQ1 f} -> allQ1 f. Proof. by move=> ? fD1 ?; apply: fD1. Qed. Lemma on1lS : (forall x, f x \in D2) -> {on D2, allQ1l f & h} -> allQ1l f h. Proof. by move=> ? fD1 ?; apply: fD1. Qed. Lemma on2S : (forall x, f x \in D2) -> {on D2 &, allQ2 f} -> allQ2 f. Proof. by move=> ? fD1 ? ?; apply: fD1. Qed. Lemma on1S_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1, {on D2, allQ1 f}} -> {in D1, allQ1 f}. Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. Lemma on1lS_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1, {on D2, allQ1l f & h}} -> {in D1, allQ1l f h}. Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. Lemma on2S_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1 &, {on D2 &, allQ2 f}} -> {in D1 &, allQ2 f}. Proof. by move=> fD fD1 ? ? ? ?; apply: fD1 => //; apply: fD. Qed. Lemma in_on1S : (forall x, f x \in D2) -> {in T1, {on D2, allQ1 f}} -> allQ1 f. Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. Lemma in_on1lS : (forall x, f x \in D2) -> {in T1, {on D2, allQ1l f & h}} -> allQ1l f h. Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. Lemma in_on2S : (forall x, f x \in D2) -> {in T1 &, {on D2 &, allQ2 f}} -> allQ2 f. Proof. by move=> fD2 fD1 ? ?; apply: fD1. Qed. End LocalGlobal. Arguments in_on1P {T1 T2 D1 D2 f Q1}. Arguments in_on1lP {T1 T2 T3 D1 D2 f h Q1l}. Arguments in_on2P {T1 T2 D1 D2 f Q2}. Arguments on1W_in {T1 T2 D1} D2 {f Q1}. Arguments on1lW_in {T1 T2 T3 D1} D2 {f h Q1l}. Arguments on2W_in {T1 T2 D1} D2 {f Q2}. Arguments in_on1W {T1 T2} D1 D2 {f Q1}. Arguments in_on1lW {T1 T2 T3} D1 D2 {f h Q1l}. Arguments in_on2W {T1 T2} D1 D2 {f Q2}. Arguments on1S {T1 T2} D2 {f Q1}. Arguments on1lS {T1 T2 T3} D2 {f h Q1l}. Arguments on2S {T1 T2} D2 {f Q2}. Arguments on1S_in {T1 T2 D1} D2 {f Q1}. Arguments on1lS_in {T1 T2 T3 D1} D2 {f h Q1l}. Arguments on2S_in {T1 T2 D1} D2 {f Q2}. Arguments in_on1S {T1 T2} D2 {f Q1}. Arguments in_on1lS {T1 T2 T3} D2 {f h Q1l}. Arguments in_on2S {T1 T2} D2 {f Q2}. (******************) (* v8.13 addtions *) (******************) Section CancelOn. Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}). Variables (f : aT -> rT) (g : rT -> aT). Lemma onW_can : cancel g f -> {on aD, cancel g & f}. Proof. exact: on1lW. Qed. Lemma onW_can_in : {in rD, cancel g f} -> {in rD, {on aD, cancel g & f}}. Proof. exact: on1lW_in. Qed. Lemma in_onW_can : cancel g f -> {in rD, {on aD, cancel g & f}}. Proof. exact: in_on1lW. Qed. Lemma onS_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f. Proof. exact: on1lS. Qed. Lemma onS_can_in : {homo g : x / x \in rD >-> x \in aD} -> {in rD, {on aD, cancel g & f}} -> {in rD, cancel g f}. Proof. exact: on1lS_in. Qed. Lemma in_onS_can : (forall x, g x \in aD) -> {in rT, {on aD, cancel g & f}} -> cancel g f. Proof. exact: in_on1lS. Qed. End CancelOn. Arguments onW_can {aT rT} aD {f g}. Arguments onW_can_in {aT rT} aD {rD f g}. Arguments in_onW_can {aT rT} aD rD {f g}. Arguments onS_can {aT rT} aD {f g}. Arguments onS_can_in {aT rT} aD {rD f g}. Arguments in_onS_can {aT rT} aD {f g}. Section MonoHomoMorphismTheory_in. Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}). Variables (f : aT -> rT) (g : rT -> aT) (aR : rel aT) (rR : rel rT). Hypothesis fgK : {in rD, {on aD, cancel g & f}}. Hypothesis mem_g : {homo g : x / x \in rD >-> x \in aD}. Lemma homoRL_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}. Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed. Lemma homoLR_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}. Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed. Lemma homo_mono_in : {in aD &, {homo f : x y / aR x y >-> rR x y}} -> {in rD &, {homo g : x y / rR x y >-> aR x y}} -> {in rD &, {mono g : x y / rR x y >-> aR x y}}. Proof. move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact. by apply: contraNF=> /mf; rewrite !fgK ?mem_g//; apply. Qed. Lemma monoLR_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in aD & rD, forall x y, rR (f x) y = aR x (g y)}. Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK ?mem_g// mf ?mem_g. Qed. Lemma monoRL_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in rD & aD, forall x y, rR x (f y) = aR (g x) y}. Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK ?mem_g// mf ?mem_g. Qed. Lemma can_mono_in : {in aD &, {mono f : x y / aR x y >-> rR x y}} -> {in rD &, {mono g : x y / rR x y >-> aR x y}}. Proof. by move=> mf x y hx hy; rewrite -mf ?mem_g// !fgK ?mem_g. Qed. End MonoHomoMorphismTheory_in. Arguments homoRL_in {aT rT aD rD f g aR rR}. Arguments homoLR_in {aT rT aD rD f g aR rR}. Arguments homo_mono_in {aT rT aD rD f g aR rR}. Arguments monoLR_in {aT rT aD rD f g aR rR}. Arguments monoRL_in {aT rT aD rD f g aR rR}. Arguments can_mono_in {aT rT aD rD f g aR rR}. Section inj_can_sym_in_on. Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}). Variables (f : aT -> rT) (g : rT -> aT). Lemma inj_can_sym_in_on : {homo f : x / x \in aD >-> x \in rD} -> {in aD, {on rD, cancel f & g}} -> {in rD &, {on aD &, injective g}} -> {in rD, {on aD, cancel g & f}}. Proof. by move=> fD fK gI x x_rD gx_aD; apply: gI; rewrite ?inE ?fK ?fD. Qed. Lemma inj_can_sym_on : {in aD, cancel f g} -> {on aD &, injective g} -> {on aD, cancel g & f}. Proof. by move=> fK gI x gx_aD; apply: gI; rewrite ?inE ?fK. Qed. Lemma inj_can_sym_in : {homo f \o g : x / x \in rD} -> {on rD, cancel f & g} -> {in rD &, injective g} -> {in rD, cancel g f}. Proof. by move=> fgD fK gI x x_rD; apply: gI; rewrite ?fK ?fgD. Qed. End inj_can_sym_in_on. Arguments inj_can_sym_in_on {aT rT aD rD f g}. Arguments inj_can_sym_on {aT rT aD f g}. Arguments inj_can_sym_in {aT rT rD f g}. (* additional contra lemmas involving [P,Q : Prop] *) Section Contra. Implicit Types (P Q : Prop) (b : bool). Lemma contra_not P Q : (Q -> P) -> (~ P -> ~ Q). Proof. by auto. Qed. Lemma contraPnot P Q : (Q -> ~ P) -> (P -> ~ Q). Proof. by auto. Qed. Lemma contraTnot b P : (P -> ~~ b) -> (b -> ~ P). Proof. by case: b; auto. Qed. Lemma contraNnot P b : (P -> b) -> (~~ b -> ~ P). Proof. rewrite -{1}[b]negbK; exact: contraTnot. Qed. Lemma contraPT P b : (~~ b -> ~ P) -> P -> b. Proof. by case: b => //= /(_ isT) nP /nP. Qed. Lemma contra_notT P b : (~~ b -> P) -> ~ P -> b. Proof. by case: b => //= /(_ isT) HP /(_ HP). Qed. Lemma contra_notN P b : (b -> P) -> ~ P -> ~~ b. Proof. rewrite -{1}[b]negbK; exact: contra_notT. Qed. Lemma contraPN P b : (b -> ~ P) -> (P -> ~~ b). Proof. by case: b => //=; move/(_ isT) => HP /HP. Qed. Lemma contraFnot P b : (P -> b) -> b = false -> ~ P. Proof. by case: b => //; auto. Qed. Lemma contraPF P b : (b -> ~ P) -> P -> b = false. Proof. by case: b => // /(_ isT). Qed. Lemma contra_notF P b : (b -> P) -> ~ P -> b = false. Proof. by case: b => // /(_ isT). Qed. End Contra. (******************) (* v8.14 addtions *) (******************) Section in_sig. Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0). Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0). Local Notation "{ 'all3' P }" := (forall x y z, P x y z : Prop) (at level 0). Variables T1 T2 T3 : Type. Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}). Variable P1 : T1 -> Prop. Variable P2 : T1 -> T2 -> Prop. Variable P3 : T1 -> T2 -> T3 -> Prop. Lemma in1_sig : {in D1, {all1 P1}} -> forall x : sig D1, P1 (sval x). Proof. by move=> DP [x Dx]; have := DP _ Dx. Qed. Lemma in2_sig : {in D1 & D2, {all2 P2}} -> forall (x : sig D1) (y : sig D2), P2 (sval x) (sval y). Proof. by move=> DP [x Dx] [y Dy]; have := DP _ _ Dx Dy. Qed. Lemma in3_sig : {in D1 & D2 & D3, {all3 P3}} -> forall (x : sig D1) (y : sig D2) (z : sig D3), P3 (sval x) (sval y) (sval z). Proof. by move=> DP [x Dx] [y Dy] [z Dz]; have := DP _ _ _ Dx Dy Dz. Qed. End in_sig. Arguments in1_sig {T1 D1 P1}. Arguments in2_sig {T1 T2 D1 D2 P2}. Arguments in3_sig {T1 T2 T3 D1 D2 D3 P3}.