(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrbool ssrfun eqtype ssrnat seq path fintype. (******************************************************************************) (* This file develops the theory of finite graphs represented by an "edge" *) (* relation over a finType T; this mainly amounts to the theory of the *) (* transitive closure of such relations. *) (* For g : T -> seq T, e : rel T and f : T -> T we define: *) (* grel g == the adjacency relation y \in g x of the graph g. *) (* rgraph e == the graph (x |-> enum (e x)) of the relation e. *) (* dfs g n v x == the list of points traversed by a depth-first search of *) (* the g, at depth n, starting from x, and avoiding v. *) (* dfs_path g v x y <-> there is a path from x to y in g \ v. *) (* connect e == the transitive closure of e (computed by dfs). *) (* connect_sym e <-> connect e is symmetric, hence an equivalence relation. *) (* root e x == a representative of connect e x, which is the component *) (* of x in the transitive closure of e. *) (* roots e == the codomain predicate of root e. *) (* n_comp e a == the number of e-connected components of a, when a is *) (* e-closed and connect e is symmetric. *) (* equivalence classes of connect e if connect_sym e holds. *) (* closed e a == the collective predicate a is e-invariant. *) (* closure e a == the e-closure of a (the image of a under connect e). *) (* rel_adjunction h e e' a <-> in the e-closed domain a, h is the left part *) (* of an adjunction from e to another relation e'. *) (* fconnect f == connect (frel f), i.e., "connected under f iteration". *) (* froot f x == root (frel f) x, the root of the orbit of x under f. *) (* froots f == roots (frel f) == orbit representatives for f. *) (* orbit f x == lists the f-orbit of x. *) (* findex f x y == index of y in the f-orbit of x. *) (* order f x == size (cardinal) of the f-orbit of x. *) (* order_set f n == elements of f-order n. *) (* finv f == the inverse of f, if f is injective. *) (* := finv f x := iter (order x).-1 f x. *) (* fcard f a == number of orbits of f in a, provided a is f-invariant *) (* f is one-to-one. *) (* fclosed f a == the collective predicate a is f-invariant. *) (* fclosure f a == the closure of a under f iteration. *) (* fun_adjunction == rel_adjunction (frel f). *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Definition grel (T : eqType) (g : T -> seq T) := [rel x y | y \in g x]. (* Decidable connectivity in finite types. *) Section Connect. Variable T : finType. Section Dfs. Variable g : T -> seq T. Implicit Type v w a : seq T. Fixpoint dfs n v x := if x \in v then v else if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v. Lemma subset_dfs n v a : v \subset foldl (dfs n) v a. Proof. elim: n a v => [|n IHn]; first by elim=> //= *; rewrite if_same. elim=> //= x a IHa v; apply: subset_trans {IHa}(IHa _); case: ifP => // _. by apply: subset_trans (IHn _ _); apply/subsetP=> y; apply: predU1r. Qed. Inductive dfs_path v x y : Prop := DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v]. Lemma dfs_pathP n x y v : #|T| <= #|v| + n -> y \notin v -> reflect (dfs_path v x y) (y \in dfs n v x). Proof. have dfs_id w z: z \notin w -> dfs_path w z z. by exists [::]; rewrite ?disjoint_has //= orbF. elim: n => [|n IHn] /= in x y v * => le_v'_n not_vy. rewrite addn0 (geq_leqif (subset_leqif_card (subset_predT _))) in le_v'_n. by rewrite predT_subset in not_vy. have [v_x | not_vx] := ifPn. by rewrite (negPf not_vy); right=> [] [p _ _]; rewrite disjoint_has /= v_x. set v1 := x :: v; set a := g x; have sub_dfs := subsetP (subset_dfs n _ _). have [-> | neq_yx] := eqVneq y x. by rewrite sub_dfs ?mem_head //; left; apply: dfs_id. apply: (@equivP (exists2 x1, x1 \in a & dfs_path v1 x1 y)); last first. split=> {IHn} [[x1 a_x1 [p g_p p_y]] | [p /shortenP[]]]. rewrite disjoint_has has_sym /= has_sym /= => /norP[_ not_pv]. by exists (x1 :: p); rewrite /= ?a_x1 // disjoint_has negb_or not_vx. case=> [_ _ _ eq_yx | x1 p1 /=]; first by case/eqP: neq_yx. case/andP=> a_x1 g_p1 /andP[not_p1x _] /subsetP p_p1 p1y not_pv. exists x1 => //; exists p1 => //. rewrite disjoint_sym disjoint_cons not_p1x disjoint_sym. by move: not_pv; rewrite disjoint_cons => /andP[_ /disjoint_trans->]. have{neq_yx not_vy}: y \notin v1 by apply/norP. have{le_v'_n not_vx}: #|T| <= #|v1| + n by rewrite cardU1 not_vx addSnnS. elim: {x v}a v1 => [|x a IHa] v /= le_v'_n not_vy. by rewrite (negPf not_vy); right=> [] []. set v2 := dfs n v x; have v2v: v \subset v2 := subset_dfs n v [:: x]. have [v2y | not_v2y] := boolP (y \in v2). by rewrite sub_dfs //; left; exists x; [apply: mem_head | apply: IHn]. apply: {IHa}(equivP (IHa _ _ not_v2y)). by rewrite (leq_trans le_v'_n) // leq_add2r subset_leq_card. split=> [] [x1 a_x1 [p g_p p_y not_pv]]. exists x1; [exact: predU1r | exists p => //]. by rewrite disjoint_sym (disjoint_trans v2v) // disjoint_sym. suffices not_p1v2: [disjoint x1 :: p & v2]. case/predU1P: a_x1 => [def_x1 | ]; last by exists x1; last exists p. case/pred0Pn: not_p1v2; exists x; rewrite /= def_x1 mem_head /=. suffices not_vx: x \notin v by apply/IHn; last apply: dfs_id. by move: not_pv; rewrite disjoint_cons def_x1 => /andP[]. apply: contraR not_v2y => /pred0Pn[x2 /andP[/= p_x2 v2x2]]. case/splitPl: p_x2 p_y g_p not_pv => p0 p2 p0x2. rewrite last_cat cat_path -cat_cons lastI cat_rcons {}p0x2 => p2y /andP[_ g_p2]. rewrite disjoint_cat disjoint_cons => /and3P[{p0}_ not_vx2 not_p2v]. have{not_vx2 v2x2} [p1 g_p1 p1_x2 not_p1v] := IHn _ _ v le_v'_n not_vx2 v2x2. apply/IHn=> //; exists (p1 ++ p2); rewrite ?cat_path ?last_cat -?p1_x2 ?g_p1 //. by rewrite -cat_cons disjoint_cat not_p1v. Qed. Lemma dfsP x y : reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x). Proof. apply: (iffP (dfs_pathP _ _ _)); rewrite ?card0 // => [] [p]; exists p => //. by rewrite disjoint_sym disjoint0. Qed. End Dfs. Variable e : rel T. Definition rgraph x := enum (e x). Lemma rgraphK : grel rgraph =2 e. Proof. by move=> x y; rewrite /= mem_enum. Qed. Definition connect : rel T := fun x y => y \in dfs rgraph #|T| [::] x. Canonical connect_app_pred x := ApplicativePred (connect x). Lemma connectP x y : reflect (exists2 p, path e x p & y = last x p) (connect x y). Proof. apply: (equivP (dfsP _ x y)). by split=> [] [p e_p ->]; exists p => //; rewrite (eq_path rgraphK) in e_p *. Qed. Lemma connect_trans : transitive connect. Proof. move=> x y z /connectP[p e_p ->] /connectP[q e_q ->]; apply/connectP. by exists (p ++ q); rewrite ?cat_path ?e_p ?last_cat. Qed. Lemma connect0 x : connect x x. Proof. by apply/connectP; exists [::]. Qed. Lemma eq_connect0 x y : x = y -> connect x y. Proof. by move->; apply: connect0. Qed. Lemma connect1 x y : e x y -> connect x y. Proof. by move=> e_xy; apply/connectP; exists [:: y]; rewrite /= ?e_xy. Qed. Lemma path_connect x p : path e x p -> subpred (mem (x :: p)) (connect x). Proof. move=> e_p y p_y; case/splitPl: p / p_y e_p => p q <-. by rewrite cat_path => /andP[e_p _]; apply/connectP; exists p. Qed. Definition root x := odflt x (pick (connect x)). Definition roots : pred T := fun x => root x == x. Canonical roots_pred := ApplicativePred roots. Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|. Lemma connect_root x : connect x (root x). Proof. by rewrite /root; case: pickP; rewrite ?connect0. Qed. Definition connect_sym := symmetric connect. Hypothesis sym_e : connect_sym. Lemma same_connect : left_transitive connect. Proof. exact: sym_left_transitive connect_trans. Qed. Lemma same_connect_r : right_transitive connect. Proof. exact: sym_right_transitive connect_trans. Qed. Lemma same_connect1 x y : e x y -> connect x =1 connect y. Proof. by move/connect1; apply: same_connect. Qed. Lemma same_connect1r x y : e x y -> connect^~ x =1 connect^~ y. Proof. by move/connect1; apply: same_connect_r. Qed. Lemma rootP x y : reflect (root x = root y) (connect x y). Proof. apply: (iffP idP) => e_xy. by rewrite /root -(eq_pick (same_connect e_xy)); case: pickP e_xy => // ->. by apply: (connect_trans (connect_root x)); rewrite e_xy sym_e connect_root. Qed. Lemma root_root x : root (root x) = root x. Proof. exact/esym/rootP/connect_root. Qed. Lemma roots_root x : roots (root x). Proof. exact/eqP/root_root. Qed. Lemma root_connect x y : (root x == root y) = connect x y. Proof. exact: sameP eqP (rootP x y). Qed. Definition closed_mem m_a := forall x y, e x y -> in_mem x m_a = in_mem y m_a. Definition closure_mem m_a : pred T := fun x => ~~ disjoint (mem (connect x)) m_a. End Connect. Hint Resolve connect0. Notation n_comp e a := (n_comp_mem e (mem a)). Notation closed e a := (closed_mem e (mem a)). Notation closure e a := (closure_mem e (mem a)). Prenex Implicits connect root roots. Arguments dfsP [T g x y]. Arguments connectP [T e x y]. Arguments rootP [T e] _ [x y]. Notation fconnect f := (connect (coerced_frel f)). Notation froot f := (root (coerced_frel f)). Notation froots f := (roots (coerced_frel f)). Notation fcard_mem f := (n_comp_mem (coerced_frel f)). Notation fcard f a := (fcard_mem f (mem a)). Notation fclosed f a := (closed (coerced_frel f) a). Notation fclosure f a := (closure (coerced_frel f) a). Section EqConnect. Variable T : finType. Implicit Types (e : rel T) (a : pred T). Lemma connect_sub e e' : subrel e (connect e') -> subrel (connect e) (connect e'). Proof. move=> e'e x _ /connectP[p e_p ->]; elim: p x e_p => //= y p IHp x /andP[exy]. by move/IHp; apply: connect_trans; apply: e'e. Qed. Lemma relU_sym e e' : connect_sym e -> connect_sym e' -> connect_sym (relU e e'). Proof. move=> sym_e sym_e'; apply: symmetric_from_pre => x _ /connectP[p e_p ->]. elim: p x e_p => //= y p IHp x /andP[e_xy /IHp{IHp}/connect_trans]; apply. case/orP: e_xy => /connect1; rewrite (sym_e, sym_e'); by apply: connect_sub y x => x y e_xy; rewrite connect1 //= e_xy ?orbT. Qed. Lemma eq_connect e e' : e =2 e' -> connect e =2 connect e'. Proof. move=> eq_e x y; apply/connectP/connectP=> [] [p e_p ->]; by exists p; rewrite // (eq_path eq_e) in e_p *. Qed. Lemma eq_n_comp e e' : connect e =2 connect e' -> n_comp_mem e =1 n_comp_mem e'. Proof. move=> eq_e [a]; apply: eq_card => x /=. by rewrite !inE /= /roots /root /= (eq_pick (eq_e x)). Qed. Lemma eq_n_comp_r {e} a a' : a =i a' -> n_comp e a = n_comp e a'. Proof. by move=> eq_a; apply: eq_card => x; rewrite inE /= eq_a. Qed. Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a]. Proof. rewrite /n_comp_mem (eq_card (fun _ => andbT _)) -(cardID a); congr (_ + _). by apply: eq_card => x; rewrite !inE andbC. Qed. Lemma eq_root e e' : e =2 e' -> root e =1 root e'. Proof. by move=> eq_e x; rewrite /root (eq_pick (eq_connect eq_e x)). Qed. Lemma eq_roots e e' : e =2 e' -> roots e =1 roots e'. Proof. by move=> eq_e x; rewrite /roots (eq_root eq_e). Qed. End EqConnect. Section Closure. Variables (T : finType) (e : rel T). Hypothesis sym_e : connect_sym e. Implicit Type a : pred T. Lemma same_connect_rev : connect e =2 connect (fun x y => e y x). Proof. suff crev e': subrel (connect (fun x : T => e'^~ x)) (fun x => (connect e')^~x). by move=> x y; rewrite sym_e; apply/idP/idP; apply: crev. move=> x y /connectP[p e_p p_y]; apply/connectP. exists (rev (belast x p)); first by rewrite p_y rev_path. by rewrite -(last_cons x) -rev_rcons p_y -lastI rev_cons last_rcons. Qed. Lemma intro_closed a : (forall x y, e x y -> x \in a -> y \in a) -> closed e a. Proof. move=> cl_a x y e_xy; apply/idP/idP=> [|a_y]; first exact: cl_a. have{x e_xy} /connectP[p e_p ->]: connect e y x by rewrite sym_e connect1. by elim: p y a_y e_p => //= y p IHp x a_x /andP[/cl_a/(_ a_x)]; apply: IHp. Qed. Lemma closed_connect a : closed e a -> forall x y, connect e x y -> (x \in a) = (y \in a). Proof. move=> cl_a x _ /connectP[p e_p ->]. by elim: p x e_p => //= y p IHp x /andP[/cl_a->]; apply: IHp. Qed. Lemma connect_closed x : closed e (connect e x). Proof. by move=> y z /connect1/same_connect_r; apply. Qed. Lemma predC_closed a : closed e a -> closed e [predC a]. Proof. by move=> cl_a x y /cl_a; rewrite !inE => ->. Qed. Lemma closure_closed a : closed e (closure e a). Proof. apply: intro_closed => x y /connect1 e_xy; congr (~~ _). by apply: eq_disjoint; apply: same_connect. Qed. Lemma mem_closure a : {subset a <= closure e a}. Proof. by move=> x a_x; apply/existsP; exists x; rewrite !inE connect0. Qed. Lemma subset_closure a : a \subset closure e a. Proof. by apply/subsetP; apply: mem_closure. Qed. Lemma n_comp_closure2 x y : n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1. Proof. rewrite -(root_connect sym_e) -card2; apply: eq_card => z. apply/idP/idP=> [/andP[/eqP {2}<- /pred0Pn[t /andP[/= ezt exyt]]] |]. by case/pred2P: exyt => <-; rewrite (rootP sym_e ezt) !inE eqxx ?orbT. by case/pred2P=> ->; rewrite !inE roots_root //; apply/existsP; [exists x | exists y]; rewrite !inE eqxx ?orbT sym_e connect_root. Qed. Lemma n_comp_connect x : n_comp e (connect e x) = 1. Proof. rewrite -(card1 (root e x)); apply: eq_card => y. apply/andP/eqP => [[/eqP r_y /rootP-> //] | ->] /=. by rewrite inE connect_root roots_root. Qed. End Closure. Section Orbit. Variables (T : finType) (f : T -> T). Definition order x := #|fconnect f x|. Definition orbit x := traject f x (order x). Definition findex x y := index y (orbit x). Definition finv x := iter (order x).-1 f x. Lemma fconnect_iter n x : fconnect f x (iter n f x). Proof. apply/connectP. by exists (traject f (f x) n); [apply: fpath_traject | rewrite last_traject]. Qed. Lemma fconnect1 x : fconnect f x (f x). Proof. exact: (fconnect_iter 1). Qed. Lemma fconnect_finv x : fconnect f x (finv x). Proof. exact: fconnect_iter. Qed. Lemma orderSpred x : (order x).-1.+1 = order x. Proof. by rewrite /order (cardD1 x) [_ x _]connect0. Qed. Lemma size_orbit x : size (orbit x) = order x. Proof. exact: size_traject. Qed. Lemma looping_order x : looping f x (order x). Proof. apply: contraFT (ltnn (order x)); rewrite -looping_uniq => /card_uniqP. rewrite size_traject => <-; apply: subset_leq_card. by apply/subsetP=> _ /trajectP[i _ ->]; apply: fconnect_iter. Qed. Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x). Proof. apply/idP/idP=> [/connectP[_ /fpathP[m ->] ->] | /trajectP[i _ ->]]. by rewrite last_traject; apply/loopingP/looping_order. exact: fconnect_iter. Qed. Lemma orbit_uniq x : uniq (orbit x). Proof. rewrite /orbit -orderSpred looping_uniq; set n := (order x).-1. apply: contraFN (ltnn n) => /trajectP[i lt_i_n eq_fnx_fix]. rewrite {1}/n orderSpred /order -(size_traject f x n). apply: (leq_trans (subset_leq_card _) (card_size _)); apply/subsetP=> z. rewrite inE fconnect_orbit => /trajectP[j le_jn ->{z}]. rewrite -orderSpred -/n ltnS leq_eqVlt in le_jn. by apply/trajectP; case/predU1P: le_jn => [->|]; [exists i | exists j]. Qed. Lemma findex_max x y : fconnect f x y -> findex x y < order x. Proof. by rewrite [_ y]fconnect_orbit -index_mem size_orbit. Qed. Lemma findex_iter x i : i < order x -> findex x (iter i f x) = i. Proof. move=> lt_ix; rewrite -(nth_traject f lt_ix) /findex index_uniq ?orbit_uniq //. by rewrite size_orbit. Qed. Lemma iter_findex x y : fconnect f x y -> iter (findex x y) f x = y. Proof. rewrite [_ y]fconnect_orbit => fxy; pose i := index y (orbit x). have lt_ix: i < order x by rewrite -size_orbit index_mem. by rewrite -(nth_traject f lt_ix) nth_index. Qed. Lemma findex0 x : findex x x = 0. Proof. by rewrite /findex /orbit -orderSpred /= eqxx. Qed. Lemma fconnect_invariant (T' : eqType) (k : T -> T') : invariant f k =1 xpredT -> forall x y, fconnect f x y -> k x = k y. Proof. move=> eq_k_f x y /iter_findex <-; elim: {y}(findex x y) => //= n ->. by rewrite (eqP (eq_k_f _)). Qed. Section Loop. Variable p : seq T. Hypotheses (f_p : fcycle f p) (Up : uniq p). Variable x : T. Hypothesis p_x : x \in p. (* This lemma does not depend on Up : (uniq p) *) Lemma fconnect_cycle y : fconnect f x y = (y \in p). Proof. have [i q def_p] := rot_to p_x; rewrite -(mem_rot i p) def_p. have{i def_p} /andP[/eqP q_x f_q]: (f (last x q) == x) && fpath f x q. by have:= f_p; rewrite -(rot_cycle i) def_p (cycle_path x). apply/idP/idP=> [/connectP[_ /fpathP[j ->] ->] | ]; last exact: path_connect. case/fpathP: f_q q_x => n ->; rewrite !last_traject -iterS => def_x. by apply: (@loopingP _ f x n.+1); rewrite /looping def_x /= mem_head. Qed. Lemma order_cycle : order x = size p. Proof. by rewrite -(card_uniqP Up); apply (eq_card fconnect_cycle). Qed. Lemma orbit_rot_cycle : {i : nat | orbit x = rot i p}. Proof. have [i q def_p] := rot_to p_x; exists i. rewrite /orbit order_cycle -(size_rot i) def_p. suffices /fpathP[j ->]: fpath f x q by rewrite /= size_traject. by move: f_p; rewrite -(rot_cycle i) def_p (cycle_path x); case/andP. Qed. End Loop. Section orbit_in. Variable S : pred_sort (predPredType T). Hypothesis f_in : {in S, forall x, f x \in S}. Hypothesis injf : {in S &, injective f}. Lemma iter_in : {in S, forall x i, iter i f x \in S}. Proof. by move=> x xS; elim=> [|i /f_in]. Qed. Lemma finv_in : {in S, forall x, finv x \in S}. Proof. by move=> ??; rewrite iter_in. Qed. Lemma f_finv_in : {in S, cancel finv f}. Proof. move=> x xS; move: (looping_order x) (orbit_uniq x). rewrite /looping /orbit -orderSpred looping_uniq /= /looping; set n := _.-1. case/predU1P=> // /trajectP[i lt_i_n]; rewrite -iterSr. by move=> /injf ->; rewrite ?iter_in //; case/trajectP; exists i. Qed. Lemma finv_f_in : {in S, cancel f finv}. Proof. by move=> x xS; apply/injf; rewrite ?iter_in ?f_finv_in ?f_in. Qed. Lemma finv_inj_in : {in S &, injective finv}. Proof. by move=> x y xS yS q; rewrite -(f_finv_in xS) q f_finv_in. Qed. Lemma fconnect_sym_in : {in S &, forall x y, fconnect f x y = fconnect f y x}. Proof. suff Sf : {in S &, forall x y, fconnect f x y -> fconnect f y x}. by move=> *; apply/idP/idP=> /Sf->. move=> x _ xS _ /connectP [p f_p ->]; elim: p => //= y p IHp in x xS f_p *. move: f_p; rewrite -{2}(finv_f_in xS) => /andP[/eqP <- /(IHp _ (f_in xS))]. by move=> /connect_trans -> //; apply: fconnect_finv. Qed. Lemma iter_order_in : {in S, forall x, iter (order x) f x = x}. Proof. by move=> x xS; rewrite -orderSpred iterS; apply: f_finv_in. Qed. Lemma iter_finv_in n : {in S, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}. Proof. move=> x xS; rewrite -{2}[x]iter_order_in => // /subnKC {1}<-; move: (_ - n). move=> m; rewrite iter_add; elim: n => // n {2}<-. by rewrite iterSr /= finv_f_in // -iter_add iter_in. Qed. Lemma cycle_orbit_in : {in S, forall x, (fcycle f) (orbit x)}. Proof. move=> x xS; rewrite /orbit -orderSpred (cycle_path x) /= last_traject. by rewrite -/(finv x) fpath_traject f_finv_in ?eqxx. Qed. Lemma fpath_finv_in p x : (x \in S) && (fpath finv x p) = (last x p \in S) && (fpath f (last x p) (rev (belast x p))). Proof. elim: p x => //= y p IHp x; rewrite rev_cons rcons_path. transitivity [&& y \in S, f y == x & fpath finv y p]. apply/and3P/and3P => -[xS /eqP<- fxp]; split; by rewrite ?f_finv_in ?finv_f_in ?finv_in ?f_in. rewrite andbCA {}IHp !andbA [RHS]andbC -andbA; congr [&& _, _ & _]. by case: p => //= z p; rewrite rev_cons last_rcons. Qed. Lemma fpath_finv_f_in p : {in S, forall x, fpath finv x p -> fpath f (last x p) (rev (belast x p))}. Proof. by move=> x xS /(conj xS)/andP; rewrite fpath_finv_in => /andP[]. Qed. Lemma fpath_f_finv_in p x : last x p \in S -> fpath f (last x p) (rev (belast x p)) -> fpath finv x p. Proof. by move=> lS /(conj lS)/andP; rewrite -fpath_finv_in => /andP[]. Qed. End orbit_in. Hypothesis injf : injective f. Lemma f_finv : cancel finv f. Proof. exact: (in1T (f_finv_in _ (in2W _))). Qed. Lemma finv_f : cancel f finv. Proof. exact: (in1T (finv_f_in _ (in2W _))). Qed. Lemma fin_inj_bij : bijective f. Proof. by exists finv; [apply: finv_f|apply: f_finv]. Qed. Lemma finv_bij : bijective finv. Proof. by exists f; [apply: f_finv|apply: finv_f]. Qed. Lemma finv_inj : injective finv. Proof. exact: (can_inj f_finv). Qed. Lemma fconnect_sym x y : fconnect f x y = fconnect f y x. Proof. exact: (in2T (fconnect_sym_in _ (in2W _))). Qed. Let symf := fconnect_sym. Lemma iter_order x : iter (order x) f x = x. Proof. exact: (in1T (iter_order_in _ (in2W _))). Qed. Lemma iter_finv n x : n <= order x -> iter n finv x = iter (order x - n) f x. Proof. exact: (in1T (@iter_finv_in _ _ (in2W _) _)). Qed. Lemma cycle_orbit x : fcycle f (orbit x). Proof. exact: (in1T (cycle_orbit_in _ (in2W _))). Qed. Lemma fpath_finv x p : fpath finv x p = fpath f (last x p) (rev (belast x p)). Proof. exact: (@fpath_finv_in T _ (in2W _)). Qed. Lemma same_fconnect_finv : fconnect finv =2 fconnect f. Proof. move=> x y; rewrite (same_connect_rev symf); apply: {x y}eq_connect => x y /=. by rewrite (canF_eq finv_f) eq_sym. Qed. Lemma fcard_finv : fcard_mem finv =1 fcard_mem f. Proof. exact: eq_n_comp same_fconnect_finv. Qed. Definition order_set n : pred T := [pred x | order x == n]. Lemma fcard_order_set n (a : pred T) : a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|. Proof. move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a]. symmetry; transitivity #|preim (froot f) b|. apply: eq_card => x; rewrite !inE (roots_root fconnect_sym). by rewrite -(closed_connect cl_a (connect_root _ x)). have{cl_a a_n} (x): b x -> froot f x = x /\ order x = n. by case/andP=> /eqP-> /(subsetP a_n)/eqnP->. elim: {a b}#|b| {1 3 4}b (eqxx #|b|) => [|m IHm] b def_m f_b. by rewrite eq_card0 // => x; apply: (pred0P def_m). have [x b_x | b0] := pickP b; last by rewrite (eq_card0 b0) in def_m. have [r_x ox_n] := f_b x b_x; rewrite (cardD1 x) [x \in b]b_x eqSS in def_m. rewrite mulSn -{1}ox_n -(IHm _ def_m) => [|_ /andP[_ /f_b //]]. rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y. by apply: andb_idl => /= fxy; rewrite !inE -(rootP symf fxy) r_x. by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x. Qed. Lemma fclosed1 (a : pred T) : fclosed f a -> forall x, (x \in a) = (f x \in a). Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed. Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x). Proof. by apply: same_connect1 => /=. Qed. Lemma same_fconnect1_r x y : fconnect f x y = fconnect f x (f y). Proof. by apply: same_connect1r x => /=. Qed. End Orbit. Prenex Implicits order orbit findex finv order_set. Section FconnectId. Variable T : finType. Lemma fconnect_id (x : T) : fconnect id x =1 xpred1 x. Proof. by move=> y; rewrite (@fconnect_cycle _ _ [:: x]) //= ?inE ?eqxx. Qed. Lemma order_id (x : T) : order id x = 1. Proof. by rewrite /order (eq_card (fconnect_id x)) card1. Qed. Lemma orbit_id (x : T) : orbit id x = [:: x]. Proof. by rewrite /orbit order_id. Qed. Lemma froots_id (x : T) : froots id x. Proof. by rewrite /roots -fconnect_id connect_root. Qed. Lemma froot_id (x : T) : froot id x = x. Proof. by apply/eqP; apply: froots_id. Qed. Lemma fcard_id (a : pred T) : fcard id a = #|a|. Proof. by apply: eq_card => x; rewrite inE froots_id. Qed. End FconnectId. Section FconnectEq. Variables (T : finType) (f f' : T -> T). Lemma finv_eq_can : cancel f f' -> finv f =1 f'. Proof. move=> fK; have inj_f := can_inj fK. by apply: bij_can_eq fK; [apply: fin_inj_bij | apply: finv_f]. Qed. Hypothesis eq_f : f =1 f'. Let eq_rf := eq_frel eq_f. Lemma eq_fconnect : fconnect f =2 fconnect f'. Proof. exact: eq_connect eq_rf. Qed. Lemma eq_fcard : fcard_mem f =1 fcard_mem f'. Proof. exact: eq_n_comp eq_fconnect. Qed. Lemma eq_finv : finv f =1 finv f'. Proof. by move=> x; rewrite /finv /order (eq_card (eq_fconnect x)) (eq_iter eq_f). Qed. Lemma eq_froot : froot f =1 froot f'. Proof. exact: eq_root eq_rf. Qed. Lemma eq_froots : froots f =1 froots f'. Proof. exact: eq_roots eq_rf. Qed. End FconnectEq. Section FinvEq. Variables (T : finType) (f : T -> T). Hypothesis injf : injective f. Lemma finv_inv : finv (finv f) =1 f. Proof. exact: (finv_eq_can (f_finv injf)). Qed. Lemma order_finv : order (finv f) =1 order f. Proof. by move=> x; apply: eq_card (same_fconnect_finv injf x). Qed. Lemma order_set_finv n : order_set (finv f) n =i order_set f n. Proof. by move=> x; rewrite !inE order_finv. Qed. End FinvEq. Section RelAdjunction. Variables (T T' : finType) (h : T' -> T) (e : rel T) (e' : rel T'). Hypotheses (sym_e : connect_sym e) (sym_e' : connect_sym e'). Record rel_adjunction_mem m_a := RelAdjunction { rel_unit x : in_mem x m_a -> {x' : T' | connect e x (h x')}; rel_functor x' y' : in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y') }. Variable a : pred T. Hypothesis cl_a : closed e a. Local Notation rel_adjunction := (rel_adjunction_mem (mem a)). Lemma intro_adjunction (h' : forall x, x \in a -> T') : (forall x a_x, [/\ connect e x (h (h' x a_x)) & forall y a_y, e x y -> connect e' (h' x a_x) (h' y a_y)]) -> (forall x' a_x, [/\ connect e' x' (h' (h x') a_x) & forall y', e' x' y' -> connect e (h x') (h y')]) -> rel_adjunction. Proof. move=> Aee' Ae'e; split=> [y a_y | x' z' a_x]. by exists (h' y a_y); case/Aee': (a_y). apply/idP/idP=> [/connectP[p e'p ->{z'}] | /connectP[p e_p p_z']]. elim: p x' a_x e'p => //= y' p IHp x' a_x. case: (Ae'e x' a_x) => _ Ae'x /andP[/Ae'x e_xy /IHp e_yz] {Ae'x}. by apply: connect_trans (e_yz _); rewrite // -(closed_connect cl_a e_xy). case: (Ae'e x' a_x) => /connect_trans-> //. elim: p {x'}(h x') p_z' a_x e_p => /= [|y p IHp] x p_z' a_x. by rewrite -p_z' in a_x *; case: (Ae'e _ a_x); rewrite sym_e'. case/andP=> e_xy /(IHp _ p_z') e'yz; have a_y: y \in a by rewrite -(cl_a e_xy). by apply: connect_trans (e'yz a_y); case: (Aee' _ a_x) => _ ->. Qed. Lemma strict_adjunction : injective h -> a \subset codom h -> rel_base h e e' [predC a] -> rel_adjunction. Proof. move=> /= injh h_a a_ee'; pose h' x Hx := iinv (subsetP h_a x Hx). apply: (@intro_adjunction h') => [x a_x | x' a_x]. rewrite f_iinv connect0; split=> // y a_y e_xy. by rewrite connect1 // -a_ee' !f_iinv ?negbK. rewrite [h' _ _]iinv_f //; split=> // y' e'xy. by rewrite connect1 // a_ee' ?negbK. Qed. Let ccl_a := closed_connect cl_a. Lemma adjunction_closed : rel_adjunction -> closed e' [preim h of a]. Proof. case=> _ Ae'e; apply: intro_closed => // x' y' /connect1 e'xy a_x. by rewrite Ae'e // in e'xy; rewrite !inE -(ccl_a e'xy). Qed. Lemma adjunction_n_comp : rel_adjunction -> n_comp e a = n_comp e' [preim h of a]. Proof. case=> Aee' Ae'e. have inj_h: {in predI (roots e') [preim h of a] &, injective (root e \o h)}. move=> x' y' /andP[/eqP r_x' /= a_x'] /andP[/eqP r_y' _] /(rootP sym_e). by rewrite -Ae'e // => /(rootP sym_e'); rewrite r_x' r_y'. rewrite /n_comp_mem -(card_in_image inj_h); apply: eq_card => x. apply/andP/imageP=> [[/eqP rx a_x] | [x' /andP[/eqP r_x' a_x'] ->]]; last first. by rewrite /= -(ccl_a (connect_root _ _)) roots_root. have [y' e_xy]:= Aee' x a_x; pose x' := root e' y'. have ay': h y' \in a by rewrite -(ccl_a e_xy). have e_yx: connect e (h y') (h x') by rewrite -Ae'e ?connect_root. exists x'; first by rewrite inE /= -(ccl_a e_yx) ?roots_root. by rewrite /= -(rootP sym_e e_yx) -(rootP sym_e e_xy). Qed. End RelAdjunction. Notation rel_adjunction h e e' a := (rel_adjunction_mem h e e' (mem a)). Notation "@ 'rel_adjunction' T T' h e e' a" := (@rel_adjunction_mem T T' h e e' (mem a)) (at level 10, T, T', h, e, e', a at level 8, only parsing) : type_scope. Notation fun_adjunction h f f' a := (rel_adjunction h (frel f) (frel f') a). Notation "@ 'fun_adjunction' T T' h f f' a" := (@rel_adjunction T T' h (frel f) (frel f') a) (at level 10, T, T', h, f, f', a at level 8, only parsing) : type_scope. Arguments intro_adjunction [T T' h e e'] _ [a]. Arguments adjunction_n_comp [T T'] h [e e'] _ _ [a]. Unset Implicit Arguments.