(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype tuple. (******************************************************************************) (* This file implements a type for functions with a finite domain: *) (* {ffun aT -> rT} where aT should have a finType structure. *) (* Any eqType, choiceType, countType and finType structures on rT extend to *) (* {ffun aT -> rT} as Leibnitz equality and extensional equalities coincide. *) (* (T ^ n)%type is notation for {ffun 'I_n -> T}, which is isomorphic *) (* to n.-tuple T. *) (* For f : {ffun aT -> rT}, we define *) (* f x == the image of x under f (f coerces to a CiC function) *) (* fgraph f == the graph of f, i.e., the #|aT|.-tuple rT of the *) (* values of f over enum aT. *) (* finfun lam == the f such that f =1 lam; this is the RECOMMENDED *) (* interface to build an element of {ffun aT -> rT}. *) (* [ffun x => expr] == finfun (fun x => expr) *) (* [ffun => expr] == finfun (fun _ => expr) *) (* f \in ffun_on R == the range of f is a subset of R *) (* f \in family F == f belongs to the family F (f x \in F x for all x) *) (* y.-support f == the y-support of f, i.e., [pred x | f x != y]. *) (* Thus, y.-support f \subset D means f has y-support D. *) (* We will put Notation support := 0.-support in ssralg. *) (* f \in pffun_on y D R == f is a y-partial function from D to R: *) (* f has y-support D and f x \in R for all x \in D. *) (* f \in pfamily y D F == f belongs to the y-partial family from D to F: *) (* f has y-support D and f x \in F x for all x \in D. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Section Def. Variables (aT : finType) (rT : Type). Inductive finfun_type : predArgType := Finfun of #|aT|.-tuple rT. Definition finfun_of of phant (aT -> rT) := finfun_type. Identity Coercion type_of_finfun : finfun_of >-> finfun_type. Definition fgraph f := let: Finfun t := f in t. Canonical finfun_subType := Eval hnf in [newType for fgraph]. End Def. Notation "{ 'ffun' fT }" := (finfun_of (Phant fT)) (at level 0, format "{ 'ffun' '[hv' fT ']' }") : type_scope. Definition exp_finIndexType n := ordinal_finType n. Notation "T ^ n" := (@finfun_of (exp_finIndexType n) T (Phant _)) : type_scope. Local Notation fun_of_fin_def := (fun aT rT f x => tnth (@fgraph aT rT f) (enum_rank x)). Local Notation finfun_def := (fun aT rT f => @Finfun aT rT (codom_tuple f)). Module Type FunFinfunSig. Parameter fun_of_fin : forall aT rT, finfun_type aT rT -> aT -> rT. Parameter finfun : forall (aT : finType) rT, (aT -> rT) -> {ffun aT -> rT}. Axiom fun_of_finE : fun_of_fin = fun_of_fin_def. Axiom finfunE : finfun = finfun_def. End FunFinfunSig. Module FunFinfun : FunFinfunSig. Definition fun_of_fin := fun_of_fin_def. Definition finfun := finfun_def. Lemma fun_of_finE : fun_of_fin = fun_of_fin_def. Proof. by []. Qed. Lemma finfunE : finfun = finfun_def. Proof. by []. Qed. End FunFinfun. Notation fun_of_fin := FunFinfun.fun_of_fin. Notation finfun := FunFinfun.finfun. Coercion fun_of_fin : finfun_type >-> Funclass. Canonical fun_of_fin_unlock := Unlockable FunFinfun.fun_of_finE. Canonical finfun_unlock := Unlockable FunFinfun.finfunE. Notation "[ 'ffun' x : aT => F ]" := (finfun (fun x : aT => F)) (at level 0, x ident, only parsing) : fun_scope. Notation "[ 'ffun' : aT => F ]" := (finfun (fun _ : aT => F)) (at level 0, only parsing) : fun_scope. Notation "[ 'ffun' x => F ]" := [ffun x : _ => F] (at level 0, x ident, format "[ 'ffun' x => F ]") : fun_scope. Notation "[ 'ffun' => F ]" := [ffun : _ => F] (at level 0, format "[ 'ffun' => F ]") : fun_scope. (* Helper for defining notation for function families. *) Definition fmem aT rT (pT : predType rT) (f : aT -> pT) := [fun x => mem (f x)]. (* Lemmas on the correspondance between finfun_type and CiC functions. *) Section PlainTheory. Variables (aT : finType) (rT : Type). Notation fT := {ffun aT -> rT}. Implicit Types (f : fT) (R : pred rT). Canonical finfun_of_subType := Eval hnf in [subType of fT]. Lemma tnth_fgraph f i : tnth (fgraph f) i = f (enum_val i). Proof. by rewrite [@fun_of_fin]unlock enum_valK. Qed. Lemma ffunE (g : aT -> rT) : finfun g =1 g. Proof. move=> x; rewrite [@finfun]unlock unlock tnth_map. by rewrite -[tnth _ _]enum_val_nth enum_rankK. Qed. Lemma fgraph_codom f : fgraph f = codom_tuple f. Proof. apply: eq_from_tnth => i; rewrite [@fun_of_fin]unlock tnth_map. by congr tnth; rewrite -[tnth _ _]enum_val_nth enum_valK. Qed. Lemma codom_ffun f : codom f = val f. Proof. by rewrite /= fgraph_codom. Qed. Lemma ffunP f1 f2 : f1 =1 f2 <-> f1 = f2. Proof. split=> [eq_f12 | -> //]; do 2!apply: val_inj => /=. by rewrite !fgraph_codom /= (eq_codom eq_f12). Qed. Lemma ffunK : cancel (@fun_of_fin aT rT) (@finfun aT rT). Proof. by move=> f; apply/ffunP/ffunE. Qed. Definition family_mem mF := [pred f : fT | [forall x, in_mem (f x) (mF x)]]. Lemma familyP (pT : predType rT) (F : aT -> pT) f : reflect (forall x, f x \in F x) (f \in family_mem (fmem F)). Proof. exact: forallP. Qed. Definition ffun_on_mem mR := family_mem (fun _ => mR). Lemma ffun_onP R f : reflect (forall x, f x \in R) (f \in ffun_on_mem (mem R)). Proof. exact: forallP. Qed. End PlainTheory. Notation family F := (family_mem (fun_of_simpl (fmem F))). Notation ffun_on R := (ffun_on_mem _ (mem R)). Arguments familyP [aT rT pT F f]. Arguments ffun_onP [aT rT R f]. (*****************************************************************************) Lemma nth_fgraph_ord T n (x0 : T) (i : 'I_n) f : nth x0 (fgraph f) i = f i. Proof. by rewrite -{2}(enum_rankK i) -tnth_fgraph (tnth_nth x0) enum_rank_ord. Qed. Section Support. Variables (aT : Type) (rT : eqType). Definition support_for y (f : aT -> rT) := [pred x | f x != y]. Lemma supportE x y f : (x \in support_for y f) = (f x != y). Proof. by []. Qed. End Support. Notation "y .-support" := (support_for y) (at level 2, format "y .-support") : fun_scope. Section EqTheory. Variables (aT : finType) (rT : eqType). Notation fT := {ffun aT -> rT}. Implicit Types (y : rT) (D : pred aT) (R : pred rT) (f : fT). Lemma supportP y D g : reflect (forall x, x \notin D -> g x = y) (y.-support g \subset D). Proof. by apply: (iffP subsetP) => Dg x; [apply: contraNeq | apply: contraR] => /Dg->. Qed. Definition finfun_eqMixin := Eval hnf in [eqMixin of finfun_type aT rT by <:]. Canonical finfun_eqType := Eval hnf in EqType _ finfun_eqMixin. Canonical finfun_of_eqType := Eval hnf in [eqType of fT]. Definition pfamily_mem y mD (mF : aT -> mem_pred rT) := family (fun i : aT => if in_mem i mD then pred_of_simpl (mF i) else pred1 y). Lemma pfamilyP (pT : predType rT) y D (F : aT -> pT) f : reflect (y.-support f \subset D /\ {in D, forall x, f x \in F x}) (f \in pfamily_mem y (mem D) (fmem F)). Proof. apply: (iffP familyP) => [/= f_pfam | [/supportP f_supp f_fam] x]. split=> [|x Ax]; last by have:= f_pfam x; rewrite Ax. by apply/subsetP=> x; case: ifP (f_pfam x) => //= _ fx0 /negP[]. by case: ifPn => Ax /=; rewrite inE /= (f_fam, f_supp). Qed. Definition pffun_on_mem y mD mR := pfamily_mem y mD (fun _ => mR). Lemma pffun_onP y D R f : reflect (y.-support f \subset D /\ {subset image f D <= R}) (f \in pffun_on_mem y (mem D) (mem R)). Proof. apply: (iffP (pfamilyP y D (fun _ => R) f)) => [] [-> f_fam]; split=> //. by move=> _ /imageP[x Ax ->]; apply: f_fam. by move=> x Ax; apply: f_fam; apply/imageP; exists x. Qed. End EqTheory. Arguments supportP [aT rT y D g]. Notation pfamily y D F := (pfamily_mem y (mem D) (fun_of_simpl (fmem F))). Notation pffun_on y D R := (pffun_on_mem y (mem D) (mem R)). Definition finfun_choiceMixin aT (rT : choiceType) := [choiceMixin of finfun_type aT rT by <:]. Canonical finfun_choiceType aT rT := Eval hnf in ChoiceType _ (finfun_choiceMixin aT rT). Canonical finfun_of_choiceType (aT : finType) (rT : choiceType) := Eval hnf in [choiceType of {ffun aT -> rT}]. Definition finfun_countMixin aT (rT : countType) := [countMixin of finfun_type aT rT by <:]. Canonical finfun_countType aT (rT : countType) := Eval hnf in CountType _ (finfun_countMixin aT rT). Canonical finfun_of_countType (aT : finType) (rT : countType) := Eval hnf in [countType of {ffun aT -> rT}]. Canonical finfun_subCountType aT (rT : countType) := Eval hnf in [subCountType of finfun_type aT rT]. Canonical finfun_of_subCountType (aT : finType) (rT : countType) := Eval hnf in [subCountType of {ffun aT -> rT}]. (*****************************************************************************) Section FinTheory. Variables aT rT : finType. Notation fT := {ffun aT -> rT}. Notation ffT := (finfun_type aT rT). Implicit Types (D : pred aT) (R : pred rT) (F : aT -> pred rT). Definition finfun_finMixin := [finMixin of ffT by <:]. Canonical finfun_finType := Eval hnf in FinType ffT finfun_finMixin. Canonical finfun_subFinType := Eval hnf in [subFinType of ffT]. Canonical finfun_of_finType := Eval hnf in [finType of fT for finfun_finType]. Canonical finfun_of_subFinType := Eval hnf in [subFinType of fT]. Lemma card_pfamily y0 D F : #|pfamily y0 D F| = foldr muln 1 [seq #|F x| | x in D]. Proof. rewrite /image_mem; transitivity #|pfamily y0 (enum D) F|. by apply/eq_card=> f; apply/eq_forallb=> x /=; rewrite mem_enum. elim: {D}(enum D) (enum_uniq D) => /= [_|x0 s IHs /andP[s'x0 /IHs<-{IHs}]]. apply: eq_card1 [ffun=> y0] _ _ => f. apply/familyP/eqP=> [y0_f|-> x]; last by rewrite ffunE inE. by apply/ffunP=> x; rewrite ffunE (eqP (y0_f x)). pose g (xf : rT * fT) := finfun [eta xf.2 with x0 |-> xf.1]. have gK: cancel (fun f : fT => (f x0, g (y0, f))) g. by move=> f; apply/ffunP=> x; do !rewrite ffunE /=; case: eqP => // ->. rewrite -cardX -(card_image (can_inj gK)); apply: eq_card => [] [y f] /=. apply/imageP/andP=> [[f0 /familyP/=Ff0] [{f}-> ->]| [Fy /familyP/=Ff]]. split; first by have:= Ff0 x0; rewrite /= mem_head. apply/familyP=> x; have:= Ff0 x; rewrite ffunE inE /=. by case: eqP => //= -> _; rewrite ifN ?inE. exists (g (y, f)). by apply/familyP=> x; have:= Ff x; rewrite ffunE /= inE; case: eqP => // ->. congr (_, _); last apply/ffunP=> x; do !rewrite ffunE /= ?eqxx //. by case: eqP => // ->{x}; apply/eqP; have:= Ff x0; rewrite ifN. Qed. Lemma card_family F : #|family F| = foldr muln 1 [seq #|F x| | x : aT]. Proof. have [y0 _ | rT0] := pickP rT; first exact: (card_pfamily y0 aT). rewrite /image_mem; case DaT: (enum aT) => [{rT0}|x0 e] /=; last first. by rewrite !eq_card0 // => [f | y]; [have:= rT0 (f x0) | have:= rT0 y]. have{DaT} no_aT P (x : aT) : P by have:= mem_enum aT x; rewrite DaT. apply: eq_card1 [ffun x => no_aT rT x] _ _ => f. by apply/familyP/eqP=> _; [apply/ffunP | ] => x; apply: no_aT. Qed. Lemma card_pffun_on y0 D R : #|pffun_on y0 D R| = #|R| ^ #|D|. Proof. rewrite (cardE D) card_pfamily /image_mem. by elim: (enum D) => //= _ e ->; rewrite expnS. Qed. Lemma card_ffun_on R : #|ffun_on R| = #|R| ^ #|aT|. Proof. rewrite card_family /image_mem cardT. by elim: (enum aT) => //= _ e ->; rewrite expnS. Qed. Lemma card_ffun : #|fT| = #|rT| ^ #|aT|. Proof. by rewrite -card_ffun_on; apply/esym/eq_card=> f; apply/forallP. Qed. End FinTheory.