(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool. (******************************************************************************) (* This file defines two "base" combinatorial interfaces: *) (* eqType == the structure for types with a decidable equality. *) (* Equality mixins can be made Canonical to allow generic *) (* folding of equality predicates. *) (* subType p == the structure for types isomorphic to {x : T | p x} with *) (* p : pred T for some type T. *) (* The eqType interface supports the following operations: *) (* x == y <=> x compares equal to y (this is a boolean test). *) (* x == y :> T <=> x == y at type T. *) (* x != y <=> x and y compare unequal. *) (* x != y :> T <=> " " " " at type T. *) (* x =P y :: a proof of reflect (x = y) (x == y); this coerces *) (* to x == y -> x = y. *) (* comparable T <-> equality on T is decidable *) (* := forall x y : T, decidable (x = y) *) (* comparableClass compT == eqType mixin/class for compT : comparable T. *) (* pred1 a == the singleton predicate [pred x | x == a]. *) (* pred2, pred3, pred4 == pair, triple, quad predicates. *) (* predC1 a == [pred x | x != a]. *) (* [predU1 a & A] == [pred x | (x == a) || (x \in A)]. *) (* [predD1 A & a] == [pred x | x != a & x \in A]. *) (* predU1 a P, predD1 P a == applicative versions of the above. *) (* frel f == the relation associated with f : T -> T. *) (* := [rel x y | f x == y]. *) (* invariant k f == elements of T whose k-class is f-invariant. *) (* := [pred x | k (f x) == k x] with f : T -> T. *) (* [fun x : T => e0 with a1 |-> e1, .., a_n |-> e_n] *) (* [eta f with a1 |-> e1, .., a_n |-> e_n] == *) (* the auto-expanding function that maps x = a_i to e_i, and other values *) (* of x to e0 (resp. f x). In the first form the `: T' is optional and x *) (* can occur in a_i or e_i. *) (* Equality on an eqType is proof-irrelevant (lemma eq_irrelevance). *) (* The eqType interface is implemented for most standard datatypes: *) (* bool, unit, void, option, prod (denoted A * B), sum (denoted A + B), *) (* sig (denoted {x | P}), sigT (denoted {i : I & T}). We also define *) (* tagged_as u v == v cast as T_(tag u) if tag v == tag u, else u. *) (* -> We have u == v <=> (tag u == tag v) && (tagged u == tagged_as u v). *) (* The subType interface supports the following operations: *) (* val == the generic injection from a subType S of T into T. *) (* For example, if u : {x : T | P}, then val u : T. *) (* val is injective because P is proof-irrelevant (P is in bool, *) (* and the is_true coercion expands to P = true). *) (* valP == the generic proof of P (val u) for u : subType P. *) (* Sub x Px == the generic constructor for a subType P; Px is a proof of P x *) (* and P should be inferred from the expected return type. *) (* insub x == the generic partial projection of T into a subType S of T. *) (* This returns an option S; if S : subType P then *) (* insub x = Some u with val u = x if P x, *) (* None if ~~ P x *) (* The insubP lemma encapsulates this dichotomy. *) (* P should be infered from the expected return type. *) (* innew x == total (non-option) variant of insub when P = predT. *) (* {? x | P} == option {x | P} (syntax for casting insub x). *) (* insubd u0 x == the generic projection with default value u0. *) (* := odflt u0 (insub x). *) (* insigd A0 x == special case of insubd for S == {x | x \in A}, where A0 is *) (* a proof of x0 \in A. *) (* insub_eq x == transparent version of insub x that expands to Some/None *) (* when P x can evaluate. *) (* The subType P interface is most often implemented using one of: *) (* [subType for S_val] *) (* where S_val : S -> T is the first projection of a type S isomorphic to *) (* {x : T | P}. *) (* [newType for S_val] *) (* where S_val : S -> T is the projection of a type S isomorphic to *) (* wrapped T; in this case P must be predT. *) (* [subType for S_val by Srect], [newType for S_val by Srect] *) (* variants of the above where the eliminator is explicitly provided. *) (* Here S no longer needs to be syntactically identical to {x | P x} or *) (* wrapped T, but it must have a derived constructor S_Sub statisfying an *) (* eliminator Srect identical to the one the Coq Inductive command would *) (* have generated, and S_val (S_Sub x Px) (resp. S_val (S_sub x) for the *) (* newType form) must be convertible to x. *) (* variant of the above when S is a wrapper type for T (so P = predT). *) (* [subType of S], [subType of S for S_val] *) (* clones the canonical subType structure for S; if S_val is specified, *) (* then it replaces the inferred projector. *) (* Subtypes inherit the eqType structure of their base types; the generic *) (* structure should be explicitly instantiated using the *) (* [eqMixin of S by <:] *) (* construct to declare the Equality mixin; this pattern is repeated for all *) (* the combinatorial interfaces (Choice, Countable, Finite). *) (* More generally, the eqType structure can be transfered by (partial) *) (* injections, using: *) (* InjEqMixin injf == an Equality mixin for T, using an f : T -> eT where *) (* eT has an eqType structure and injf : injective f. *) (* PcanEqMixin fK == an Equality mixin similarly derived from f and a left *) (* inverse partial function g and fK : pcancel f g. *) (* CanEqMixin fK == an Equality mixin similarly derived from f and a left *) (* inverse function g and fK : cancel f g. *) (* We add the following to the standard suffixes documented in ssrbool.v: *) (* 1, 2, 3, 4 -- explicit enumeration predicate for 1 (singleton), 2, 3, or *) (* 4 values. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Module Equality. Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y). Structure mixin_of T := Mixin {op : rel T; _ : axiom op}. Notation class_of := mixin_of (only parsing). Section ClassDef. Structure type := Pack {sort; _ : class_of sort; _ : Type}. Local Coercion sort : type >-> Sortclass. Variables (T : Type) (cT : type). Definition class := let: Pack _ c _ := cT return class_of cT in c. Definition pack c := @Pack T c T. Definition clone := fun c & cT -> T & phant_id (pack c) cT => pack c. End ClassDef. Module Exports. Coercion sort : type >-> Sortclass. Notation eqType := type. Notation EqMixin := Mixin. Notation EqType T m := (@pack T m). Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T) (at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope. Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id) (at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope. Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id) (at level 0, format "[ 'eqType' 'of' T ]") : form_scope. End Exports. End Equality. Export Equality.Exports. Definition eq_op T := Equality.op (Equality.class T). Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x. Proof. by []. Qed. Lemma eqP T : Equality.axiom (@eq_op T). Proof. by case: T => ? []. Qed. Arguments eqP [T x y]. Delimit Scope eq_scope with EQ. Open Scope eq_scope. Notation "x == y" := (eq_op x y) (at level 70, no associativity) : bool_scope. Notation "x == y :> T" := ((x : T) == (y : T)) (at level 70, y at next level) : bool_scope. Notation "x != y" := (~~ (x == y)) (at level 70, no associativity) : bool_scope. Notation "x != y :> T" := (~~ (x == y :> T)) (at level 70, y at next level) : bool_scope. Notation "x =P y" := (eqP : reflect (x = y) (x == y)) (at level 70, no associativity) : eq_scope. Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T)) (at level 70, y at next level, no associativity) : eq_scope. Prenex Implicits eq_op eqP. Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed. Notation eqxx := eq_refl. Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x). Proof. exact/eqP/eqP. Qed. Hint Resolve eq_refl eq_sym. Section Contrapositives. Variables (T1 T2 : eqType). Implicit Types (A : pred T1) (b : bool) (x : T1) (z : T2). Lemma contraTeq b x y : (x != y -> ~~ b) -> b -> x = y. Proof. by move=> imp hyp; apply/eqP; apply: contraTT hyp. Qed. Lemma contraNeq b x y : (x != y -> b) -> ~~ b -> x = y. Proof. by move=> imp hyp; apply/eqP; apply: contraNT hyp. Qed. Lemma contraFeq b x y : (x != y -> b) -> b = false -> x = y. Proof. by move=> imp /negbT; apply: contraNeq. Qed. Lemma contraTneq b x y : (x = y -> ~~ b) -> b -> x != y. Proof. by move=> imp; apply: contraTN => /eqP. Qed. Lemma contraNneq b x y : (x = y -> b) -> ~~ b -> x != y. Proof. by move=> imp; apply: contraNN => /eqP. Qed. Lemma contraFneq b x y : (x = y -> b) -> b = false -> x != y. Proof. by move=> imp /negbT; apply: contraNneq. Qed. Lemma contra_eqN b x y : (b -> x != y) -> x = y -> ~~ b. Proof. by move=> imp /eqP; apply: contraL. Qed. Lemma contra_eqF b x y : (b -> x != y) -> x = y -> b = false. Proof. by move=> imp /eqP; apply: contraTF. Qed. Lemma contra_eqT b x y : (~~ b -> x != y) -> x = y -> b. Proof. by move=> imp /eqP; apply: contraLR. Qed. Lemma contra_eq z1 z2 x1 x2 : (x1 != x2 -> z1 != z2) -> z1 = z2 -> x1 = x2. Proof. by move=> imp /eqP; apply: contraTeq. Qed. Lemma contra_neq z1 z2 x1 x2 : (x1 = x2 -> z1 = z2) -> z1 != z2 -> x1 != x2. Proof. by move=> imp; apply: contraNneq => /imp->. Qed. Lemma memPn A x : reflect {in A, forall y, y != x} (x \notin A). Proof. apply: (iffP idP) => [notDx y | notDx]; first by apply: contraTneq => ->. exact: contraL (notDx x) _. Qed. Lemma memPnC A x : reflect {in A, forall y, x != y} (x \notin A). Proof. by apply: (iffP (memPn A x)) => A'x y /A'x; rewrite eq_sym. Qed. Lemma ifN_eq R x y vT vF : x != y -> (if x == y then vT else vF) = vF :> R. Proof. exact: ifN. Qed. Lemma ifN_eqC R x y vT vF : x != y -> (if y == x then vT else vF) = vF :> R. Proof. by rewrite eq_sym; apply: ifN. Qed. End Contrapositives. Arguments memPn [T1 A x]. Arguments memPnC [T1 A x]. Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2. Proof. pose proj z e := if x =P z is ReflectT e0 then e0 else e. suff: injective (proj y) by rewrite /proj => injp e e'; apply: injp; case: eqP. pose join (e : x = _) := etrans (esym e). apply: can_inj (join x y (proj x (erefl x))) _. by case: y /; case: _ / (proj x _). Qed. Corollary eq_axiomK (T : eqType) (x : T) : all_equal_to (erefl x). Proof. by move=> eq_x_x; apply: eq_irrelevance. Qed. (* We use the module system to circumvent a silly limitation that *) (* forbids using the same constant to coerce to different targets. *) Module Type EqTypePredSig. Parameter sort : eqType -> predArgType. End EqTypePredSig. Module MakeEqTypePred (eqmod : EqTypePredSig). Coercion eqmod.sort : eqType >-> predArgType. End MakeEqTypePred. Module Export EqTypePred := MakeEqTypePred Equality. Lemma unit_eqP : Equality.axiom (fun _ _ : unit => true). Proof. by do 2!case; left. Qed. Definition unit_eqMixin := EqMixin unit_eqP. Canonical unit_eqType := Eval hnf in EqType unit unit_eqMixin. (* Comparison for booleans. *) (* This is extensionally equal, but not convertible to Bool.eqb. *) Definition eqb b := addb (~~ b). Lemma eqbP : Equality.axiom eqb. Proof. by do 2!case; constructor. Qed. Canonical bool_eqMixin := EqMixin eqbP. Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin. Lemma eqbE : eqb = eq_op. Proof. by []. Qed. Lemma bool_irrelevance (x y : bool) (E E' : x = y) : E = E'. Proof. exact: eq_irrelevance. Qed. Lemma negb_add b1 b2 : ~~ (b1 (+) b2) = (b1 == b2). Proof. by rewrite -addNb. Qed. Lemma negb_eqb b1 b2 : (b1 != b2) = b1 (+) b2. Proof. by rewrite -addNb negbK. Qed. Lemma eqb_id b : (b == true) = b. Proof. by case: b. Qed. Lemma eqbF_neg b : (b == false) = ~~ b. Proof. by case: b. Qed. Lemma eqb_negLR b1 b2 : (~~ b1 == b2) = (b1 == ~~ b2). Proof. by case: b1; case: b2. Qed. (* Equality-based predicates. *) Notation xpred1 := (fun a1 x => x == a1). Notation xpred2 := (fun a1 a2 x => (x == a1) || (x == a2)). Notation xpred3 := (fun a1 a2 a3 x => [|| x == a1, x == a2 | x == a3]). Notation xpred4 := (fun a1 a2 a3 a4 x => [|| x == a1, x == a2, x == a3 | x == a4]). Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x). Notation xpredC1 := (fun a1 x => x != a1). Notation xpredD1 := (fun (p : pred _) a1 x => (x != a1) && p x). Section EqPred. Variable T : eqType. Definition pred1 (a1 : T) := SimplPred (xpred1 a1). Definition pred2 (a1 a2 : T) := SimplPred (xpred2 a1 a2). Definition pred3 (a1 a2 a3 : T) := SimplPred (xpred3 a1 a2 a3). Definition pred4 (a1 a2 a3 a4 : T) := SimplPred (xpred4 a1 a2 a3 a4). Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p). Definition predC1 (a1 : T) := SimplPred (xpredC1 a1). Definition predD1 p (a1 : T) := SimplPred (xpredD1 p a1). Lemma pred1E : pred1 =2 eq_op. Proof. by move=> x y; apply: eq_sym. Qed. Variables (T2 : eqType) (x y : T) (z u : T2) (b : bool). Lemma predU1P : reflect (x = y \/ b) ((x == y) || b). Proof. by apply: (iffP orP); do [case=> [/eqP|]; [left | right]]. Qed. Lemma pred2P : reflect (x = y \/ z = u) ((x == y) || (z == u)). Proof. by apply: (iffP orP); do [case=> /eqP; [left | right]]. Qed. Lemma predD1P : reflect (x <> y /\ b) ((x != y) && b). Proof. by apply: (iffP andP)=> [] [] // /eqP. Qed. Lemma predU1l : x = y -> (x == y) || b. Proof. by move->; rewrite eqxx. Qed. Lemma predU1r : b -> (x == y) || b. Proof. by move->; rewrite orbT. Qed. Lemma eqVneq : {x = y} + {x != y}. Proof. by case: eqP; [left | right]. Qed. End EqPred. Arguments predU1P [T x y b]. Arguments pred2P [T T2 x y z u]. Arguments predD1P [T x y b]. Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1 predU1P. Notation "[ 'predU1' x & A ]" := (predU1 x [mem A]) (at level 0, format "[ 'predU1' x & A ]") : fun_scope. Notation "[ 'predD1' A & x ]" := (predD1 [mem A] x) (at level 0, format "[ 'predD1' A & x ]") : fun_scope. (* Lemmas for reflected equality and functions. *) Section EqFun. Section Exo. Variables (aT rT : eqType) (D : pred aT) (f : aT -> rT) (g : rT -> aT). Lemma inj_eq : injective f -> forall x y, (f x == f y) = (x == y). Proof. by move=> inj_f x y; apply/eqP/eqP=> [|-> //]; apply: inj_f. Qed. Lemma can_eq : cancel f g -> forall x y, (f x == f y) = (x == y). Proof. by move/can_inj; apply: inj_eq. Qed. Lemma bij_eq : bijective f -> forall x y, (f x == f y) = (x == y). Proof. by move/bij_inj; apply: inj_eq. Qed. Lemma can2_eq : cancel f g -> cancel g f -> forall x y, (f x == y) = (x == g y). Proof. by move=> fK gK x y; rewrite -{1}[y]gK; apply: can_eq. Qed. Lemma inj_in_eq : {in D &, injective f} -> {in D &, forall x y, (f x == f y) = (x == y)}. Proof. by move=> inj_f x y Dx Dy; apply/eqP/eqP=> [|-> //]; apply: inj_f. Qed. Lemma can_in_eq : {in D, cancel f g} -> {in D &, forall x y, (f x == f y) = (x == y)}. Proof. by move/can_in_inj; apply: inj_in_eq. Qed. End Exo. Section Endo. Variable T : eqType. Definition frel f := [rel x y : T | f x == y]. Lemma inv_eq f : involutive f -> forall x y : T, (f x == y) = (x == f y). Proof. by move=> fK; apply: can2_eq. Qed. Lemma eq_frel f f' : f =1 f' -> frel f =2 frel f'. Proof. by move=> eq_f x y; rewrite /= eq_f. Qed. End Endo. Variable aT : Type. (* The invariant of an function f wrt a projection k is the pred of points *) (* that have the same projection as their image. *) Definition invariant (rT : eqType) f (k : aT -> rT) := [pred x | k (f x) == k x]. Variables (rT1 rT2 : eqType) (f : aT -> aT) (h : rT1 -> rT2) (k : aT -> rT1). Lemma invariant_comp : subpred (invariant f k) (invariant f (h \o k)). Proof. by move=> x eq_kfx; rewrite /= (eqP eq_kfx). Qed. Lemma invariant_inj : injective h -> invariant f (h \o k) =1 invariant f k. Proof. by move=> inj_h x; apply: (inj_eq inj_h). Qed. End EqFun. Prenex Implicits frel. (* The coercion to rel must be explicit for derived Notations to unparse. *) Notation coerced_frel f := (rel_of_simpl_rel (frel f)) (only parsing). Section FunWith. Variables (aT : eqType) (rT : Type). CoInductive fun_delta : Type := FunDelta of aT & rT. Definition fwith x y (f : aT -> rT) := [fun z => if z == x then y else f z]. Definition app_fdelta df f z := let: FunDelta x y := df in if z == x then y else f z. End FunWith. Prenex Implicits fwith. Notation "x |-> y" := (FunDelta x y) (at level 190, no associativity, format "'[hv' x '/ ' |-> y ']'") : fun_delta_scope. Delimit Scope fun_delta_scope with FUN_DELTA. Arguments app_fdelta _ _%type _%FUN_DELTA _ _. Notation "[ 'fun' z : T => F 'with' d1 , .. , dn ]" := (SimplFunDelta (fun z : T => app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..)) (at level 0, z ident, only parsing) : fun_scope. Notation "[ 'fun' z => F 'with' d1 , .. , dn ]" := (SimplFunDelta (fun z => app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..)) (at level 0, z ident, format "'[hv' [ '[' 'fun' z => '/ ' F ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'" ) : fun_scope. Notation "[ 'eta' f 'with' d1 , .. , dn ]" := (SimplFunDelta (fun _ => app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA f) ..)) (at level 0, format "'[hv' [ '[' 'eta' '/ ' f ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'" ) : fun_scope. (* Various EqType constructions. *) Section ComparableType. Variable T : Type. Definition comparable := forall x y : T, decidable (x = y). Hypothesis Hcompare : comparable. Definition compareb x y : bool := Hcompare x y. Lemma compareP : Equality.axiom compareb. Proof. by move=> x y; apply: sumboolP. Qed. Definition comparableClass := EqMixin compareP. End ComparableType. Definition eq_comparable (T : eqType) : comparable T := fun x y => decP (x =P y). Section SubType. Variables (T : Type) (P : pred T). Structure subType : Type := SubType { sub_sort :> Type; val : sub_sort -> T; Sub : forall x, P x -> sub_sort; _ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u; _ : forall x Px, val (@Sub x Px) = x }. Arguments Sub [s]. Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed. Definition vrefl_rect := vrefl. Definition clone_subType U v := fun sT & sub_sort sT -> U => fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'. Variable sT : subType. CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px). Lemma SubP u : Sub_spec u. Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed. Lemma SubK x Px : @val sT (Sub x Px) = x. Proof. by case: sT. Qed. Definition insub x := if @idP (P x) is ReflectT Px then @Some sT (Sub x Px) else None. Definition insubd u0 x := odflt u0 (insub x). CoInductive insub_spec x : option sT -> Type := | InsubSome u of P x & val u = x : insub_spec x (Some u) | InsubNone of ~~ P x : insub_spec x None. Lemma insubP x : insub_spec x (insub x). Proof. by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; apply/negP]. Qed. Lemma insubT x Px : insub x = Some (Sub x Px). Proof. do [case: insubP => [/SubP[y Py] _ <- | /negP// ]; rewrite SubK] in Px *. by rewrite (bool_irrelevance Px Py). Qed. Lemma insubF x : P x = false -> insub x = None. Proof. by move/idP; case: insubP. Qed. Lemma insubN x : ~~ P x -> insub x = None. Proof. by move/negPf/insubF. Qed. Lemma isSome_insub : ([eta insub] : pred T) =1 P. Proof. by apply: fsym => x; case: insubP => // /negPf. Qed. Lemma insubK : ocancel insub (@val _). Proof. by move=> x; case: insubP. Qed. Lemma valP (u : sT) : P (val u). Proof. by case/SubP: u => x Px; rewrite SubK. Qed. Lemma valK : pcancel (@val _) insub. Proof. by case/SubP=> x Px; rewrite SubK; apply: insubT. Qed. Lemma val_inj : injective (@val sT). Proof. exact: pcan_inj valK. Qed. Lemma valKd u0 : cancel (@val _) (insubd u0). Proof. by move=> u; rewrite /insubd valK. Qed. Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0. Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed. Lemma insubdK u0 : {in P, cancel (insubd u0) (@val _)}. Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed. Definition insub_eq x := let Some_sub Px := Some (Sub x Px : sT) in let None_sub _ := None in (if P x as Px return P x = Px -> _ then Some_sub else None_sub) (erefl _). Lemma insub_eqE : insub_eq =1 insub. Proof. rewrite /insub_eq /insub => x; case: {2 3}_ / idP (erefl _) => // Px Px'. by congr (Some _); apply: val_inj; rewrite !SubK. Qed. End SubType. Arguments SubType [T P]. Arguments Sub [T P s]. Arguments vrefl [T P]. Arguments vrefl_rect [T P]. Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. Arguments insub [T P sT]. Arguments insubT [T] P [sT x]. Arguments val_inj [T P sT]. Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj. Local Notation inlined_sub_rect := (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px). Local Notation inlined_new_rect := (fun K K_S u => let (x) as u return K u := u in K_S x). Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect) (at level 0, only parsing) : form_scope. Notation "[ 'sub' 'Type' 'for' v ]" := (SubType _ v _ _ vrefl_rect) (at level 0, format "[ 'sub' 'Type' 'for' v ]") : form_scope. Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl) (at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope. Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun) (at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope. (* Notation "[ 'subType' 'for' v ]" := (clone_subType _ v id idfun) (at level 0, format "[ 'subType' 'for' v ]") : form_scope. *) Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id) (at level 0, format "[ 'subType' 'of' U ]") : form_scope. Definition NewType T U v c Urec := let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in SubType U v (fun x _ => c x) Urec'. Arguments NewType [T U]. Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect) (at level 0, only parsing) : form_scope. Notation "[ 'new' 'Type' 'for' v ]" := (NewType v _ _ vrefl_rect) (at level 0, format "[ 'new' 'Type' 'for' v ]") : form_scope. Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl) (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope. Definition innew T nT x := @Sub T predT nT x (erefl true). Arguments innew [T nT]. Prenex Implicits innew. Lemma innew_val T nT : cancel val (@innew T nT). Proof. by move=> u; apply: val_inj; apply: SubK. Qed. (* Prenex Implicits and renaming. *) Notation sval := (@proj1_sig _ _). Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'"). Section SigProj. Variables (T : Type) (P Q : T -> Prop). Lemma svalP : forall u : sig P, P (sval u). Proof. by case. Qed. Definition s2val (u : sig2 P Q) := let: exist2 x _ _ := u in x. Lemma s2valP u : P (s2val u). Proof. by case: u. Qed. Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed. End SigProj. Prenex Implicits svalP s2val s2valP s2valP'. Canonical sig_subType T (P : pred T) : subType [eta P] := Eval hnf in [subType for @sval T [eta [eta P]]]. (* Shorthand for sigma types over collective predicates. *) Notation "{ x 'in' A }" := {x | x \in A} (at level 0, x at level 99, format "{ x 'in' A }") : type_scope. Notation "{ x 'in' A | P }" := {x | (x \in A) && P} (at level 0, x at level 99, format "{ x 'in' A | P }") : type_scope. (* Shorthand for the return type of insub. *) Notation "{ ? x : T | P }" := (option {x : T | is_true P}) (at level 0, x at level 99, only parsing) : type_scope. Notation "{ ? x | P }" := {? x : _ | P} (at level 0, x at level 99, format "{ ? x | P }") : type_scope. Notation "{ ? x 'in' A }" := {? x | x \in A} (at level 0, x at level 99, format "{ ? x 'in' A }") : type_scope. Notation "{ ? x 'in' A | P }" := {? x | (x \in A) && P} (at level 0, x at level 99, format "{ ? x 'in' A | P }") : type_scope. (* A variant of injection with default that infers a collective predicate *) (* from the membership proof for the default value. *) Definition insigd T (A : mem_pred T) x (Ax : in_mem x A) := insubd (exist [eta A] x Ax). (* There should be a rel definition for the subType equality op, but this *) (* seems to cause the simpl tactic to diverge on expressions involving == *) (* on 4+ nested subTypes in a "strict" position (e.g., after ~~). *) (* Definition feq f := [rel x y | f x == f y]. *) Section TransferEqType. Variables (T : Type) (eT : eqType) (f : T -> eT). Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y). Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; apply: f_inj. Qed. Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj). Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK). Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK). End TransferEqType. Section SubEqType. Variables (T : eqType) (P : pred T) (sT : subType P). Local Notation ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)). Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed. Definition sub_eqMixin := EqMixin val_eqP. Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin. Definition SubEqMixin := (let: SubType _ v _ _ _ as sT' := sT return ev_ax sT' val -> Equality.class_of sT' in fun vP : ev_ax _ v => EqMixin vP ) val_eqP. Lemma val_eqE (u v : sT) : (val u == val v) = (u == v). Proof. by []. Qed. End SubEqType. Arguments val_eqP [T P sT x y]. Prenex Implicits val_eqP. Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T) (at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope. Section SigEqType. Variables (T : eqType) (P : pred T). Definition sig_eqMixin := Eval hnf in [eqMixin of {x | P x} by <:]. Canonical sig_eqType := Eval hnf in EqType {x | P x} sig_eqMixin. End SigEqType. Section ProdEqType. Variable T1 T2 : eqType. Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)]. Lemma pair_eqP : Equality.axiom pair_eq. Proof. move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=. by do 2!move/eqP->. Qed. Definition prod_eqMixin := EqMixin pair_eqP. Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin. Lemma pair_eqE : pair_eq = eq_op :> rel _. Proof. by []. Qed. Lemma xpair_eqE (x1 y1 : T1) (x2 y2 : T2) : ((x1, x2) == (y1, y2)) = ((x1 == y1) && (x2 == y2)). Proof. by []. Qed. Lemma pair_eq1 (u v : T1 * T2) : u == v -> u.1 == v.1. Proof. by case/andP. Qed. Lemma pair_eq2 (u v : T1 * T2) : u == v -> u.2 == v.2. Proof. by case/andP. Qed. End ProdEqType. Arguments pair_eqP [T1 T2]. Prenex Implicits pair_eqP. Definition predX T1 T2 (p1 : pred T1) (p2 : pred T2) := [pred z | p1 z.1 & p2 z.2]. Notation "[ 'predX' A1 & A2 ]" := (predX [mem A1] [mem A2]) (at level 0, format "[ 'predX' A1 & A2 ]") : fun_scope. Section OptionEqType. Variable T : eqType. Definition opt_eq (u v : option T) : bool := oapp (fun x => oapp (eq_op x) false v) (~~ v) u. Lemma opt_eqP : Equality.axiom opt_eq. Proof. case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->]. Qed. Canonical option_eqMixin := EqMixin opt_eqP. Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin. End OptionEqType. Definition tag := projS1. Definition tagged I T_ : forall u, T_(tag u) := @projS2 I [eta T_]. Definition Tagged I i T_ x := @existS I [eta T_] i x. Arguments Tagged [I i]. Prenex Implicits tag tagged Tagged. Section TaggedAs. Variables (I : eqType) (T_ : I -> Type). Implicit Types u v : {i : I & T_ i}. Definition tagged_as u v := if tag u =P tag v is ReflectT eq_uv then eq_rect_r T_ (tagged v) eq_uv else tagged u. Lemma tagged_asE u x : tagged_as u (Tagged T_ x) = x. Proof. by rewrite /tagged_as /=; case: eqP => // eq_uu; rewrite [eq_uu]eq_axiomK. Qed. End TaggedAs. Section TagEqType. Variables (I : eqType) (T_ : I -> eqType). Implicit Types u v : {i : I & T_ i}. Definition tag_eq u v := (tag u == tag v) && (tagged u == tagged_as u v). Lemma tag_eqP : Equality.axiom tag_eq. Proof. rewrite /tag_eq => [] [i x] [j] /=. case: eqP => [<-|Hij] y; last by right; case. by apply: (iffP eqP) => [->|<-]; rewrite tagged_asE. Qed. Canonical tag_eqMixin := EqMixin tag_eqP. Canonical tag_eqType := Eval hnf in EqType {i : I & T_ i} tag_eqMixin. Lemma tag_eqE : tag_eq = eq_op. Proof. by []. Qed. Lemma eq_tag u v : u == v -> tag u = tag v. Proof. by move/eqP->. Qed. Lemma eq_Tagged u x :(u == Tagged _ x) = (tagged u == x). Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed. End TagEqType. Arguments tag_eqP [I T_ x y]. Prenex Implicits tag_eqP. Section SumEqType. Variables T1 T2 : eqType. Implicit Types u v : T1 + T2. Definition sum_eq u v := match u, v with | inl x, inl y | inr x, inr y => x == y | _, _ => false end. Lemma sum_eqP : Equality.axiom sum_eq. Proof. case=> x [] y /=; by [right | apply: (iffP eqP) => [->|[->]]]. Qed. Canonical sum_eqMixin := EqMixin sum_eqP. Canonical sum_eqType := Eval hnf in EqType (T1 + T2) sum_eqMixin. Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed. End SumEqType. Arguments sum_eqP [T1 T2 x y]. Prenex Implicits sum_eqP.