(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool eqtype ssrnat seq. (******************************************************************************) (* This file deals with divisibility for natural numbers. *) (* It contains the definitions of: *) (* edivn m d == the pair composed of the quotient and remainder *) (* of the Euclidean division of m by d. *) (* m %/ d == quotient of the Euclidean division of m by d. *) (* m %% d == remainder of the Euclidean division of m by d. *) (* m = n %[mod d] <-> m equals n modulo d. *) (* m == n %[mod d] <=> m equals n modulo d (boolean version). *) (* m <> n %[mod d] <-> m differs from n modulo d. *) (* m != n %[mod d] <=> m differs from n modulo d (boolean version). *) (* d %| m <=> d divides m. *) (* gcdn m n == the GCD of m and n. *) (* egcdn m n == the extended GCD (Bezout coefficient pair) of m and n. *) (* If egcdn m n = (u, v), then gcdn m n = m * u - n * v. *) (* lcmn m n == the LCM of m and n. *) (* coprime m n <=> m and n are coprime (:= gcdn m n == 1). *) (* chinese m n r s == witness of the chinese remainder theorem. *) (* We adjoin an m to operator suffixes to indicate a nested %% (modn), as in *) (* modnDml : m %% d + n = m + n %[mod d]. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (** Euclidean division *) Definition edivn_rec d := fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m). Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m). CoInductive edivn_spec m d : nat * nat -> Type := EdivnSpec q r of m = q * d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r). Lemma edivnP m d : edivn_spec m d (edivn m d). Proof. rewrite -{1}[m]/(0 * d + m) /edivn; case: d => //= d. elim: m {-2}m 0 (leqnn m) => [|n IHn] [|m] q //= le_mn. have le_m'n: m - d <= n by rewrite (leq_trans (leq_subr d m)). rewrite subn_if_gt; case: ltnP => [// | le_dm]. by rewrite -{1}(subnKC le_dm) -addSn addnA -mulSnr; apply: IHn. Qed. Lemma edivn_eq d q r : r < d -> edivn (q * d + r) d = (q, r). Proof. move=> lt_rd; have d_gt0: 0 < d by apply: leq_trans lt_rd. case: edivnP lt_rd => q' r'; rewrite d_gt0 /=. wlog: q q' r r' / q <= q' by case/orP: (leq_total q q'); last symmetry; eauto. rewrite leq_eqVlt; case/predU1P => [-> /addnI-> |] //=. rewrite -(leq_pmul2r d_gt0) => /leq_add lt_qr eq_qr _ /lt_qr {lt_qr}. by rewrite addnS ltnNge mulSn -addnA eq_qr addnCA addnA leq_addr. Qed. Definition divn m d := (edivn m d).1. Notation "m %/ d" := (divn m d) : nat_scope. (* We redefine modn so that it is structurally decreasing. *) Definition modn_rec d := fix loop m := if m - d is m'.+1 then loop m' else m. Definition modn m d := if d > 0 then modn_rec d.-1 m else m. Notation "m %% d" := (modn m d) : nat_scope. Notation "m = n %[mod d ]" := (m %% d = n %% d) : nat_scope. Notation "m == n %[mod d ]" := (m %% d == n %% d) : nat_scope. Notation "m <> n %[mod d ]" := (m %% d <> n %% d) : nat_scope. Notation "m != n %[mod d ]" := (m %% d != n %% d) : nat_scope. Lemma modn_def m d : m %% d = (edivn m d).2. Proof. case: d => //= d; rewrite /modn /edivn /=. elim: m {-2}m 0 (leqnn m) => [|n IHn] [|m] q //=. rewrite ltnS !subn_if_gt; case: (d <= m) => // le_mn. by apply: IHn; apply: leq_trans le_mn; apply: leq_subr. Qed. Lemma edivn_def m d : edivn m d = (m %/ d, m %% d). Proof. by rewrite /divn modn_def; case: (edivn m d). Qed. Lemma divn_eq m d : m = m %/ d * d + m %% d. Proof. by rewrite /divn modn_def; case: edivnP. Qed. Lemma div0n d : 0 %/ d = 0. Proof. by case: d. Qed. Lemma divn0 m : m %/ 0 = 0. Proof. by []. Qed. Lemma mod0n d : 0 %% d = 0. Proof. by case: d. Qed. Lemma modn0 m : m %% 0 = m. Proof. by []. Qed. Lemma divn_small m d : m < d -> m %/ d = 0. Proof. by move=> lt_md; rewrite /divn (edivn_eq 0). Qed. Lemma divnMDl q m d : 0 < d -> (q * d + m) %/ d = q + m %/ d. Proof. move=> d_gt0; rewrite {1}(divn_eq m d) addnA -mulnDl. by rewrite /divn edivn_eq // modn_def; case: edivnP; rewrite d_gt0. Qed. Lemma mulnK m d : 0 < d -> m * d %/ d = m. Proof. by move=> d_gt0; rewrite -[m * d]addn0 divnMDl // div0n addn0. Qed. Lemma mulKn m d : 0 < d -> d * m %/ d = m. Proof. by move=> d_gt0; rewrite mulnC mulnK. Qed. Lemma expnB p m n : p > 0 -> m >= n -> p ^ (m - n) = p ^ m %/ p ^ n. Proof. by move=> p_gt0 /subnK{2}<-; rewrite expnD mulnK // expn_gt0 p_gt0. Qed. Lemma modn1 m : m %% 1 = 0. Proof. by rewrite modn_def; case: edivnP => ? []. Qed. Lemma divn1 m : m %/ 1 = m. Proof. by rewrite {2}(@divn_eq m 1) // modn1 addn0 muln1. Qed. Lemma divnn d : d %/ d = (0 < d). Proof. by case: d => // d; rewrite -{1}[d.+1]muln1 mulKn. Qed. Lemma divnMl p m d : p > 0 -> p * m %/ (p * d) = m %/ d. Proof. move=> p_gt0; case: (posnP d) => [-> | d_gt0]; first by rewrite muln0. rewrite {2}/divn; case: edivnP; rewrite d_gt0 /= => q r ->{m} lt_rd. rewrite mulnDr mulnCA divnMDl; last by rewrite muln_gt0 p_gt0. by rewrite addnC divn_small // ltn_pmul2l. Qed. Arguments divnMl [p m d]. Lemma divnMr p m d : p > 0 -> m * p %/ (d * p) = m %/ d. Proof. by move=> p_gt0; rewrite -!(mulnC p) divnMl. Qed. Arguments divnMr [p m d]. Lemma ltn_mod m d : (m %% d < d) = (0 < d). Proof. by case: d => // d; rewrite modn_def; case: edivnP. Qed. Lemma ltn_pmod m d : 0 < d -> m %% d < d. Proof. by rewrite ltn_mod. Qed. Lemma leq_trunc_div m d : m %/ d * d <= m. Proof. by rewrite {2}(divn_eq m d) leq_addr. Qed. Lemma leq_mod m d : m %% d <= m. Proof. by rewrite {2}(divn_eq m d) leq_addl. Qed. Lemma leq_div m d : m %/ d <= m. Proof. by case: d => // d; apply: leq_trans (leq_pmulr _ _) (leq_trunc_div _ _). Qed. Lemma ltn_ceil m d : 0 < d -> m < (m %/ d).+1 * d. Proof. by move=> d_gt0; rewrite {1}(divn_eq m d) -addnS mulSnr leq_add2l ltn_mod. Qed. Lemma ltn_divLR m n d : d > 0 -> (m %/ d < n) = (m < n * d). Proof. move=> d_gt0; apply/idP/idP. by rewrite -(leq_pmul2r d_gt0); apply: leq_trans (ltn_ceil _ _). rewrite !ltnNge -(@leq_pmul2r d n) //; apply: contra => le_nd_floor. exact: leq_trans le_nd_floor (leq_trunc_div _ _). Qed. Lemma leq_divRL m n d : d > 0 -> (m <= n %/ d) = (m * d <= n). Proof. by move=> d_gt0; rewrite leqNgt ltn_divLR // -leqNgt. Qed. Lemma ltn_Pdiv m d : 1 < d -> 0 < m -> m %/ d < m. Proof. by move=> d_gt1 m_gt0; rewrite ltn_divLR ?ltn_Pmulr // ltnW. Qed. Lemma divn_gt0 d m : 0 < d -> (0 < m %/ d) = (d <= m). Proof. by move=> d_gt0; rewrite leq_divRL ?mul1n. Qed. Lemma leq_div2r d m n : m <= n -> m %/ d <= n %/ d. Proof. have [-> //| d_gt0 le_mn] := posnP d. by rewrite leq_divRL // (leq_trans _ le_mn) -?leq_divRL. Qed. Lemma leq_div2l m d e : 0 < d -> d <= e -> m %/ e <= m %/ d. Proof. move/leq_divRL=> -> le_de. by apply: leq_trans (leq_trunc_div m e); apply: leq_mul. Qed. Lemma leq_divDl p m n : (m + n) %/ p <= m %/ p + n %/ p + 1. Proof. have [-> //| p_gt0] := posnP p; rewrite -ltnS -addnS ltn_divLR // ltnW //. rewrite {1}(divn_eq n p) {1}(divn_eq m p) addnACA !mulnDl -3!addnS leq_add2l. by rewrite mul2n -addnn -addSn leq_add // ltn_mod. Qed. Lemma geq_divBl k m p : k %/ p - m %/ p <= (k - m) %/ p + 1. Proof. rewrite leq_subLR addnA; apply: leq_trans (leq_divDl _ _ _). by rewrite -maxnE leq_div2r ?leq_maxr. Qed. Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p. Proof. case: n p => [|n] [|p]; rewrite ?muln0 ?div0n //. rewrite {2}(divn_eq m (n.+1 * p.+1)) mulnA mulnAC !divnMDl //. by rewrite [_ %/ p.+1]divn_small ?addn0 // ltn_divLR // mulnC ltn_mod. Qed. Lemma divnAC m n p : m %/ n %/ p = m %/ p %/ n. Proof. by rewrite -!divnMA mulnC. Qed. Lemma modn_small m d : m < d -> m %% d = m. Proof. by move=> lt_md; rewrite {2}(divn_eq m d) divn_small. Qed. Lemma modn_mod m d : m %% d = m %[mod d]. Proof. by case: d => // d; apply: modn_small; rewrite ltn_mod. Qed. Lemma modnMDl p m d : p * d + m = m %[mod d]. Proof. case: (posnP d) => [-> | d_gt0]; first by rewrite muln0. by rewrite {1}(divn_eq m d) addnA -mulnDl modn_def edivn_eq // ltn_mod. Qed. Lemma muln_modr {p m d} : 0 < p -> p * (m %% d) = (p * m) %% (p * d). Proof. move=> p_gt0; apply: (@addnI (p * (m %/ d * d))). by rewrite -mulnDr -divn_eq mulnCA -(divnMl p_gt0) -divn_eq. Qed. Lemma muln_modl {p m d} : 0 < p -> (m %% d) * p = (m * p) %% (d * p). Proof. by rewrite -!(mulnC p); apply: muln_modr. Qed. Lemma modnDl m d : d + m = m %[mod d]. Proof. by rewrite -{1}[d]mul1n modnMDl. Qed. Lemma modnDr m d : m + d = m %[mod d]. Proof. by rewrite addnC modnDl. Qed. Lemma modnn d : d %% d = 0. Proof. by rewrite -{1}[d]addn0 modnDl mod0n. Qed. Lemma modnMl p d : p * d %% d = 0. Proof. by rewrite -[p * d]addn0 modnMDl mod0n. Qed. Lemma modnMr p d : d * p %% d = 0. Proof. by rewrite mulnC modnMl. Qed. Lemma modnDml m n d : m %% d + n = m + n %[mod d]. Proof. by rewrite {2}(divn_eq m d) -addnA modnMDl. Qed. Lemma modnDmr m n d : m + n %% d = m + n %[mod d]. Proof. by rewrite !(addnC m) modnDml. Qed. Lemma modnDm m n d : m %% d + n %% d = m + n %[mod d]. Proof. by rewrite modnDml modnDmr. Qed. Lemma eqn_modDl p m n d : (p + m == p + n %[mod d]) = (m == n %[mod d]). Proof. case: d => [|d]; first by rewrite !modn0 eqn_add2l. apply/eqP/eqP=> eq_mn; last by rewrite -modnDmr eq_mn modnDmr. rewrite -(modnMDl p m) -(modnMDl p n) !mulnSr -!addnA. by rewrite -modnDmr eq_mn modnDmr. Qed. Lemma eqn_modDr p m n d : (m + p == n + p %[mod d]) = (m == n %[mod d]). Proof. by rewrite -!(addnC p) eqn_modDl. Qed. Lemma modnMml m n d : m %% d * n = m * n %[mod d]. Proof. by rewrite {2}(divn_eq m d) mulnDl mulnAC modnMDl. Qed. Lemma modnMmr m n d : m * (n %% d) = m * n %[mod d]. Proof. by rewrite !(mulnC m) modnMml. Qed. Lemma modnMm m n d : m %% d * (n %% d) = m * n %[mod d]. Proof. by rewrite modnMml modnMmr. Qed. Lemma modn2 m : m %% 2 = odd m. Proof. by elim: m => //= m IHm; rewrite -addn1 -modnDml IHm; case odd. Qed. Lemma divn2 m : m %/ 2 = m./2. Proof. by rewrite {2}(divn_eq m 2) modn2 muln2 addnC half_bit_double. Qed. Lemma odd_mod m d : odd d = false -> odd (m %% d) = odd m. Proof. by move=> d_even; rewrite {2}(divn_eq m d) odd_add odd_mul d_even andbF. Qed. Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n]. Proof. by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. Qed. (** Divisibility **) Definition dvdn d m := m %% d == 0. Notation "m %| d" := (dvdn m d) : nat_scope. Lemma dvdnP d m : reflect (exists k, m = k * d) (d %| m). Proof. apply: (iffP eqP) => [md0 | [k ->]]; last by rewrite modnMl. by exists (m %/ d); rewrite {1}(divn_eq m d) md0 addn0. Qed. Arguments dvdnP [d m]. Prenex Implicits dvdnP. Lemma dvdn0 d : d %| 0. Proof. by case: d. Qed. Lemma dvd0n n : (0 %| n) = (n == 0). Proof. by case: n. Qed. Lemma dvdn1 d : (d %| 1) = (d == 1). Proof. by case: d => [|[|d]] //; rewrite /dvdn modn_small. Qed. Lemma dvd1n m : 1 %| m. Proof. by rewrite /dvdn modn1. Qed. Lemma dvdn_gt0 d m : m > 0 -> d %| m -> d > 0. Proof. by case: d => // /prednK <-. Qed. Lemma dvdnn m : m %| m. Proof. by rewrite /dvdn modnn. Qed. Lemma dvdn_mull d m n : d %| n -> d %| m * n. Proof. by case/dvdnP=> n' ->; rewrite /dvdn mulnA modnMl. Qed. Lemma dvdn_mulr d m n : d %| m -> d %| m * n. Proof. by move=> d_m; rewrite mulnC dvdn_mull. Qed. Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr. Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2. Proof. by move=> /dvdnP[q1 ->] /dvdnP[q2 ->]; rewrite mulnCA -mulnA 2?dvdn_mull. Qed. Lemma dvdn_trans n d m : d %| n -> n %| m -> d %| m. Proof. by move=> d_dv_n /dvdnP[n1 ->]; apply: dvdn_mull. Qed. Lemma dvdn_eq d m : (d %| m) = (m %/ d * d == m). Proof. apply/eqP/eqP=> [modm0 | <-]; last exact: modnMl. by rewrite {2}(divn_eq m d) modm0 addn0. Qed. Lemma dvdn2 n : (2 %| n) = ~~ odd n. Proof. by rewrite /dvdn modn2; case (odd n). Qed. Lemma dvdn_odd m n : m %| n -> odd n -> odd m. Proof. by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. Qed. Lemma divnK d m : d %| m -> m %/ d * d = m. Proof. by rewrite dvdn_eq; move/eqP. Qed. Lemma leq_divLR d m n : d %| m -> (m %/ d <= n) = (m <= n * d). Proof. by case: d m => [|d] [|m] ///divnK=> {2}<-; rewrite leq_pmul2r. Qed. Lemma ltn_divRL d m n : d %| m -> (n < m %/ d) = (n * d < m). Proof. by move=> dv_d_m; rewrite !ltnNge leq_divLR. Qed. Lemma eqn_div d m n : d > 0 -> d %| m -> (n == m %/ d) = (n * d == m). Proof. by move=> d_gt0 dv_d_m; rewrite -(eqn_pmul2r d_gt0) divnK. Qed. Lemma eqn_mul d m n : d > 0 -> d %| m -> (m == n * d) = (m %/ d == n). Proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqn_div // eq_sym. Qed. Lemma divn_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d. Proof. case: d m => [[] //| d m] dv_d_m; apply/eqP. by rewrite eqn_div ?dvdn_mulr // mulnAC divnK. Qed. Lemma muln_divA d m n : d %| n -> m * (n %/ d) = m * n %/ d. Proof. by move=> dv_d_m; rewrite !(mulnC m) divn_mulAC. Qed. Lemma muln_divCA d m n : d %| m -> d %| n -> m * (n %/ d) = n * (m %/ d). Proof. by move=> dv_d_m dv_d_n; rewrite mulnC divn_mulAC ?muln_divA. Qed. Lemma divnA m n p : p %| n -> m %/ (n %/ p) = m * p %/ n. Proof. by case: p => [|p] dv_n; rewrite -{2}(divnK dv_n) // divnMr. Qed. Lemma modn_dvdm m n d : d %| m -> n %% m = n %[mod d]. Proof. by case/dvdnP=> q def_m; rewrite {2}(divn_eq n m) {3}def_m mulnA modnMDl. Qed. Lemma dvdn_leq d m : 0 < m -> d %| m -> d <= m. Proof. by move=> m_gt0 /dvdnP[[|k] Dm]; rewrite Dm // leq_addr in m_gt0 *. Qed. Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false. Proof. by move=> n_gt0 lt_nd; rewrite /dvdn eqn0Ngt modn_small ?n_gt0. Qed. Lemma eqn_dvd m n : (m == n) = (m %| n) && (n %| m). Proof. case: m n => [|m] [|n] //; apply/idP/andP; first by move/eqP->; auto. rewrite eqn_leq => [[Hmn Hnm]]; apply/andP; have:= dvdn_leq; auto. Qed. Lemma dvdn_pmul2l p d m : 0 < p -> (p * d %| p * m) = (d %| m). Proof. by case: p => // p _; rewrite /dvdn -muln_modr // muln_eq0. Qed. Arguments dvdn_pmul2l [p d m]. Lemma dvdn_pmul2r p d m : 0 < p -> (d * p %| m * p) = (d %| m). Proof. by move=> p_gt0; rewrite -!(mulnC p) dvdn_pmul2l. Qed. Arguments dvdn_pmul2r [p d m]. Lemma dvdn_divLR p d m : 0 < p -> p %| d -> (d %/ p %| m) = (d %| m * p). Proof. by move=> /(@dvdn_pmul2r p _ m) <- /divnK->. Qed. Lemma dvdn_divRL p d m : p %| m -> (d %| m %/ p) = (d * p %| m). Proof. have [-> | /(@dvdn_pmul2r p d) <- /divnK-> //] := posnP p. by rewrite divn0 muln0 dvdn0. Qed. Lemma dvdn_div d m : d %| m -> m %/ d %| m. Proof. by move/divnK=> {2}<-; apply: dvdn_mulr. Qed. Lemma dvdn_exp2l p m n : m <= n -> p ^ m %| p ^ n. Proof. by move/subnK <-; rewrite expnD dvdn_mull. Qed. Lemma dvdn_Pexp2l p m n : p > 1 -> (p ^ m %| p ^ n) = (m <= n). Proof. move=> p_gt1; case: leqP => [|gt_n_m]; first exact: dvdn_exp2l. by rewrite gtnNdvd ?ltn_exp2l ?expn_gt0 // ltnW. Qed. Lemma dvdn_exp2r m n k : m %| n -> m ^ k %| n ^ k. Proof. by case/dvdnP=> q ->; rewrite expnMn dvdn_mull. Qed. Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n). Proof. by case/dvdnP=> q ->; rewrite /dvdn modnMDl. Qed. Lemma dvdn_addl n d m : d %| n -> (d %| m + n) = (d %| m). Proof. by rewrite addnC; apply: dvdn_addr. Qed. Lemma dvdn_add d m n : d %| m -> d %| n -> d %| m + n. Proof. by move/dvdn_addr->. Qed. Lemma dvdn_add_eq d m n : d %| m + n -> (d %| m) = (d %| n). Proof. by move=> dv_d_mn; apply/idP/idP => [/dvdn_addr | /dvdn_addl] <-. Qed. Lemma dvdn_subr d m n : n <= m -> d %| m -> (d %| m - n) = (d %| n). Proof. by move=> le_n_m dv_d_m; apply: dvdn_add_eq; rewrite subnK. Qed. Lemma dvdn_subl d m n : n <= m -> d %| n -> (d %| m - n) = (d %| m). Proof. by move=> le_n_m dv_d_m; rewrite -(dvdn_addl _ dv_d_m) subnK. Qed. Lemma dvdn_sub d m n : d %| m -> d %| n -> d %| m - n. Proof. by case: (leqP n m) => [le_nm /dvdn_subr <- // | /ltnW/eqnP ->]; rewrite dvdn0. Qed. Lemma dvdn_exp k d m : 0 < k -> d %| m -> d %| (m ^ k). Proof. by case: k => // k _ d_dv_m; rewrite expnS dvdn_mulr. Qed. Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!. Proof. case: m => //= m; elim: n => //= n IHn; rewrite ltnS leq_eqVlt. by case/predU1P=> [-> | /IHn]; [apply: dvdn_mulr | apply: dvdn_mull]. Qed. Hint Resolve dvdn_add dvdn_sub dvdn_exp. Lemma eqn_mod_dvd d m n : n <= m -> (m == n %[mod d]) = (d %| m - n). Proof. by move=> le_mn; rewrite -{1}[n]add0n -{1}(subnK le_mn) eqn_modDr mod0n. Qed. Lemma divnDl m n d : d %| m -> (m + n) %/ d = m %/ d + n %/ d. Proof. by case: d => // d /divnK{1}<-; rewrite divnMDl. Qed. Lemma divnDr m n d : d %| n -> (m + n) %/ d = m %/ d + n %/ d. Proof. by move=> dv_n; rewrite addnC divnDl // addnC. Qed. (***********************************************************************) (* A function that computes the gcd of 2 numbers *) (***********************************************************************) Fixpoint gcdn_rec m n := let n' := n %% m in if n' is 0 then m else if m - n'.-1 is m'.+1 then gcdn_rec (m' %% n') n' else n'. Definition gcdn := nosimpl gcdn_rec. Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m. Proof. rewrite /gcdn; elim: m {-2}m (leqnn m) n => [|s IHs] [|m] le_ms [|n] //=. case def_n': (_ %% _) => // [n']. have{def_n'} lt_n'm: n' < m by rewrite -def_n' -ltnS ltn_pmod. rewrite {}IHs ?(leq_trans lt_n'm) // subn_if_gt ltnW //=; congr gcdn_rec. by rewrite -{2}(subnK (ltnW lt_n'm)) -addnS modnDr. Qed. Lemma gcdnn : idempotent gcdn. Proof. by case=> // n; rewrite gcdnE modnn. Qed. Lemma gcdnC : commutative gcdn. Proof. move=> m n; wlog lt_nm: m n / n < m. by case: (ltngtP n m) => [||-> //]; last symmetry; auto. by rewrite gcdnE -{1}(ltn_predK lt_nm) modn_small. Qed. Lemma gcd0n : left_id 0 gcdn. Proof. by case. Qed. Lemma gcdn0 : right_id 0 gcdn. Proof. by case. Qed. Lemma gcd1n : left_zero 1 gcdn. Proof. by move=> n; rewrite gcdnE modn1. Qed. Lemma gcdn1 : right_zero 1 gcdn. Proof. by move=> n; rewrite gcdnC gcd1n. Qed. Lemma dvdn_gcdr m n : gcdn m n %| n. Proof. elim: m {-2}m (leqnn m) n => [|s IHs] [|m] le_ms [|n] //. rewrite gcdnE; case def_n': (_ %% _) => [|n']; first by rewrite /dvdn def_n'. have lt_n's: n' < s by rewrite -ltnS (leq_trans _ le_ms) // -def_n' ltn_pmod. rewrite /= (divn_eq n.+1 m.+1) def_n' dvdn_addr ?dvdn_mull //; last exact: IHs. by rewrite gcdnE /= IHs // (leq_trans _ lt_n's) // ltnW // ltn_pmod. Qed. Lemma dvdn_gcdl m n : gcdn m n %| m. Proof. by rewrite gcdnC dvdn_gcdr. Qed. Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n). Proof. by case: m n => [|m] [|n] //; apply: (@dvdn_gt0 _ m.+1) => //; apply: dvdn_gcdl. Qed. Lemma gcdnMDl k m n : gcdn m (k * m + n) = gcdn m n. Proof. by rewrite !(gcdnE m) modnMDl mulnC; case: m. Qed. Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n. Proof. by rewrite -{2}(mul1n m) gcdnMDl. Qed. Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n. Proof. by rewrite addnC gcdnDl. Qed. Lemma gcdnMl n m : gcdn n (m * n) = n. Proof. by case: n => [|n]; rewrite gcdnE modnMl gcd0n. Qed. Lemma gcdnMr n m : gcdn n (n * m) = n. Proof. by rewrite mulnC gcdnMl. Qed. Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n). Proof. by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (gcdnMl, dvdn_gcdr). Qed. Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m). Proof. by rewrite gcdnC; apply: gcdn_idPl. Qed. Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n). Proof. rewrite /minn; case: leqP; [rewrite gcdnC | move/ltnW]; by move/(dvdn_exp2l e)/gcdn_idPl. Qed. Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n. Proof. by rewrite {2}(divn_eq n m) gcdnMDl. Qed. Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n. Proof. by rewrite !(gcdnC _ n) gcdn_modr. Qed. (* Extended gcd, which computes Bezout coefficients. *) Fixpoint Bezout_rec km kn qs := if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs' else (km, kn). Fixpoint egcdn_rec m n s qs := if s is s'.+1 then let: (q, r) := edivn m n in if r > 0 then egcdn_rec n r s' (q :: qs) else if odd (size qs) then qs else q.-1 :: qs else [::0]. Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]). CoInductive egcdn_spec m n : nat * nat -> Type := EgcdnSpec km kn of km * m = kn * n + gcdn m n & kn * gcdn m n < m : egcdn_spec m n (km, kn). Lemma egcd0n n : egcdn 0 n = (1, 0). Proof. by case: n. Qed. Lemma egcdnP m n : m > 0 -> egcdn_spec m n (egcdn m n). Proof. rewrite /egcdn; have: (n, m) = Bezout_rec n m [::] by []. case: (posnP n) => [-> /=|]; first by split; rewrite // mul1n gcdn0. move: {2 6}n {4 6}n {1 4}m [::] (ltnSn n) => s n0 m0. elim: s n m => [[]//|s IHs] n m qs /= le_ns n_gt0 def_mn0 m_gt0. case: edivnP => q r def_m; rewrite n_gt0 /= => lt_rn. case: posnP => [r0 {s le_ns IHs lt_rn}|r_gt0]; last first. by apply: IHs => //=; [rewrite (leq_trans lt_rn) | rewrite natTrecE -def_m]. rewrite {r}r0 addn0 in def_m; set b := odd _; pose d := gcdn m n. pose km := ~~ b : nat; pose kn := if b then 1 else q.-1. rewrite (_ : Bezout_rec _ _ _ = Bezout_rec km kn qs); last first. by rewrite /kn /km; case: (b) => //=; rewrite natTrecE addn0 muln1. have def_d: d = n by rewrite /d def_m gcdnC gcdnE modnMl gcd0n -[n]prednK. have: km * m + 2 * b * d = kn * n + d. rewrite {}/kn {}/km def_m def_d -mulSnr; case: b; rewrite //= addn0 mul1n. by rewrite prednK //; apply: dvdn_gt0 m_gt0 _; rewrite def_m dvdn_mulr. have{def_m}: kn * d <= m. have q_gt0 : 0 < q by rewrite def_m muln_gt0 n_gt0 ?andbT in m_gt0. by rewrite /kn; case b; rewrite def_d def_m leq_pmul2r // leq_pred. have{def_d}: km * d <= n by rewrite -[n]mul1n def_d leq_pmul2r // leq_b1. move: km {q}kn m_gt0 n_gt0 def_mn0; rewrite {}/d {}/b. elim: qs m n => [|q qs IHq] n r kn kr n_gt0 r_gt0 /=. case=> -> -> {m0 n0}; rewrite !addn0 => le_kn_r _ def_d; split=> //. have d_gt0: 0 < gcdn n r by rewrite gcdn_gt0 n_gt0. have: 0 < kn * n by rewrite def_d addn_gt0 d_gt0 orbT. rewrite muln_gt0 n_gt0 andbT; move/ltn_pmul2l <-. by rewrite def_d -addn1 leq_add // mulnCA leq_mul2l le_kn_r orbT. rewrite !natTrecE; set m:= _ + r; set km := _ * _ + kn; pose d := gcdn m n. have ->: gcdn n r = d by rewrite [d]gcdnC gcdnMDl. have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT. have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0. move/IHq=> {IHq} IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d. by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT. apply: (@addIn d); rewrite -!addnA addnn addnCA mulnDr -addnA addnCA. rewrite /km mulnDl mulnCA mulnA -addnA; congr (_ + _). by rewrite -def_d addnC -addnA -mulnDl -mulnDr addn_negb -mul2n. Qed. Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}. Proof. move=> m_gt0; case: (egcdnP n m_gt0) => km kn def_d lt_kn_m. exists kn; last by rewrite addnC -def_d dvdn_mull. apply: leq_ltn_trans lt_kn_m. by rewrite -{1}[kn]muln1 leq_mul2l gcdn_gt0 m_gt0 orbT. Qed. Lemma Bezoutr m n : n > 0 -> {a | a < n & n %| gcdn m n + a * m}. Proof. by rewrite gcdnC; apply: Bezoutl. Qed. (* Back to the gcd. *) Lemma dvdn_gcd p m n : p %| gcdn m n = (p %| m) && (p %| n). Proof. apply/idP/andP=> [dv_pmn | [dv_pm dv_pn]]. by rewrite !(dvdn_trans dv_pmn) ?dvdn_gcdl ?dvdn_gcdr. case (posnP n) => [->|n_gt0]; first by rewrite gcdn0. case: (Bezoutr m n_gt0) => // km _ /(dvdn_trans dv_pn). by rewrite dvdn_addl // dvdn_mull. Qed. Lemma gcdnAC : right_commutative gcdn. Proof. suffices dvd m n p: gcdn (gcdn m n) p %| gcdn (gcdn m p) n. by move=> m n p; apply/eqP; rewrite eqn_dvd !dvd. rewrite !dvdn_gcd dvdn_gcdr. by rewrite !(dvdn_trans (dvdn_gcdl _ p)) ?dvdn_gcdl ?dvdn_gcdr. Qed. Lemma gcdnA : associative gcdn. Proof. by move=> m n p; rewrite !(gcdnC m) gcdnAC. Qed. Lemma gcdnCA : left_commutative gcdn. Proof. by move=> m n p; rewrite !gcdnA (gcdnC m). Qed. Lemma gcdnACA : interchange gcdn gcdn. Proof. by move=> m n p q; rewrite -!gcdnA (gcdnCA n). Qed. Lemma muln_gcdr : right_distributive muln gcdn. Proof. move=> p m n; case: (posnP p) => [-> //| p_gt0]. elim: {m}m.+1 {-2}m n (ltnSn m) => // s IHs m n; rewrite ltnS => le_ms. rewrite gcdnE [rhs in _ = rhs]gcdnE muln_eq0 (gtn_eqF p_gt0) -muln_modr //=. by case: posnP => // m_gt0; apply: IHs; apply: leq_trans le_ms; apply: ltn_pmod. Qed. Lemma muln_gcdl : left_distributive muln gcdn. Proof. by move=> m n p; rewrite -!(mulnC p) muln_gcdr. Qed. Lemma gcdn_def d m n : d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) -> gcdn m n = d. Proof. move=> dv_dm dv_dn gdv_d; apply/eqP. by rewrite eqn_dvd dvdn_gcd dv_dm dv_dn gdv_d ?dvdn_gcdl ?dvdn_gcdr. Qed. Lemma muln_divCA_gcd n m : n * (m %/ gcdn n m) = m * (n %/ gcdn n m). Proof. by rewrite muln_divCA ?dvdn_gcdl ?dvdn_gcdr. Qed. (* We derive the lcm directly. *) Definition lcmn m n := m * n %/ gcdn m n. Lemma lcmnC : commutative lcmn. Proof. by move=> m n; rewrite /lcmn mulnC gcdnC. Qed. Lemma lcm0n : left_zero 0 lcmn. Proof. by move=> n; apply: div0n. Qed. Lemma lcmn0 : right_zero 0 lcmn. Proof. by move=> n; rewrite lcmnC lcm0n. Qed. Lemma lcm1n : left_id 1 lcmn. Proof. by move=> n; rewrite /lcmn gcd1n mul1n divn1. Qed. Lemma lcmn1 : right_id 1 lcmn. Proof. by move=> n; rewrite lcmnC lcm1n. Qed. Lemma muln_lcm_gcd m n : lcmn m n * gcdn m n = m * n. Proof. by apply/eqP; rewrite divnK ?dvdn_mull ?dvdn_gcdr. Qed. Lemma lcmn_gt0 m n : (0 < lcmn m n) = (0 < m) && (0 < n). Proof. by rewrite -muln_gt0 ltn_divRL ?dvdn_mull ?dvdn_gcdr. Qed. Lemma muln_lcmr : right_distributive muln lcmn. Proof. case=> // m n p; rewrite /lcmn -muln_gcdr -!mulnA divnMl // mulnCA. by rewrite muln_divA ?dvdn_mull ?dvdn_gcdr. Qed. Lemma muln_lcml : left_distributive muln lcmn. Proof. by move=> m n p; rewrite -!(mulnC p) muln_lcmr. Qed. Lemma lcmnA : associative lcmn. Proof. move=> m n p; rewrite {1 3}/lcmn mulnC !divn_mulAC ?dvdn_mull ?dvdn_gcdr //. rewrite -!divnMA ?dvdn_mulr ?dvdn_gcdl // mulnC mulnA !muln_gcdr. by rewrite ![_ * lcmn _ _]mulnC !muln_lcm_gcd !muln_gcdl -!(mulnC m) gcdnA. Qed. Lemma lcmnCA : left_commutative lcmn. Proof. by move=> m n p; rewrite !lcmnA (lcmnC m). Qed. Lemma lcmnAC : right_commutative lcmn. Proof. by move=> m n p; rewrite -!lcmnA (lcmnC n). Qed. Lemma lcmnACA : interchange lcmn lcmn. Proof. by move=> m n p q; rewrite -!lcmnA (lcmnCA n). Qed. Lemma dvdn_lcml d1 d2 : d1 %| lcmn d1 d2. Proof. by rewrite /lcmn -muln_divA ?dvdn_gcdr ?dvdn_mulr. Qed. Lemma dvdn_lcmr d1 d2 : d2 %| lcmn d1 d2. Proof. by rewrite lcmnC dvdn_lcml. Qed. Lemma dvdn_lcm d1 d2 m : lcmn d1 d2 %| m = (d1 %| m) && (d2 %| m). Proof. case: d1 d2 => [|d1] [|d2]; try by case: m => [|m]; rewrite ?lcmn0 ?andbF. rewrite -(@dvdn_pmul2r (gcdn d1.+1 d2.+1)) ?gcdn_gt0 // muln_lcm_gcd. by rewrite muln_gcdr dvdn_gcd {1}mulnC andbC !dvdn_pmul2r. Qed. Lemma lcmnMl m n : lcmn m (m * n) = m * n. Proof. by case: m => // m; rewrite /lcmn gcdnMr mulKn. Qed. Lemma lcmnMr m n : lcmn n (m * n) = m * n. Proof. by rewrite mulnC lcmnMl. Qed. Lemma lcmn_idPr {m n} : reflect (lcmn m n = n) (m %| n). Proof. by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (lcmnMr, dvdn_lcml). Qed. Lemma lcmn_idPl {m n} : reflect (lcmn m n = m) (n %| m). Proof. by rewrite lcmnC; apply: lcmn_idPr. Qed. Lemma expn_max e m n : e ^ maxn m n = lcmn (e ^ m) (e ^ n). Proof. rewrite /maxn; case: leqP; [rewrite lcmnC | move/ltnW]; by move/(dvdn_exp2l e)/lcmn_idPr. Qed. (* Coprime factors *) Definition coprime m n := gcdn m n == 1. Lemma coprime1n n : coprime 1 n. Proof. by rewrite /coprime gcd1n. Qed. Lemma coprimen1 n : coprime n 1. Proof. by rewrite /coprime gcdn1. Qed. Lemma coprime_sym m n : coprime m n = coprime n m. Proof. by rewrite /coprime gcdnC. Qed. Lemma coprime_modl m n : coprime (m %% n) n = coprime m n. Proof. by rewrite /coprime gcdn_modl. Qed. Lemma coprime_modr m n : coprime m (n %% m) = coprime m n. Proof. by rewrite /coprime gcdn_modr. Qed. Lemma coprime2n n : coprime 2 n = odd n. Proof. by rewrite -coprime_modr modn2; case: (odd n). Qed. Lemma coprimen2 n : coprime n 2 = odd n. Proof. by rewrite coprime_sym coprime2n. Qed. Lemma coprimeSn n : coprime n.+1 n. Proof. by rewrite -coprime_modl (modnDr 1) coprime_modl coprime1n. Qed. Lemma coprimenS n : coprime n n.+1. Proof. by rewrite coprime_sym coprimeSn. Qed. Lemma coprimePn n : n > 0 -> coprime n.-1 n. Proof. by case: n => // n _; rewrite coprimenS. Qed. Lemma coprimenP n : n > 0 -> coprime n n.-1. Proof. by case: n => // n _; rewrite coprimeSn. Qed. Lemma coprimeP n m : n > 0 -> reflect (exists u, u.1 * n - u.2 * m = 1) (coprime n m). Proof. move=> n_gt0; apply: (iffP eqP) => [<-| [[kn km] /= kn_km_1]]. by have [kn km kg _] := egcdnP m n_gt0; exists (kn, km); rewrite kg addKn. apply gcdn_def; rewrite ?dvd1n // => d dv_d_n dv_d_m. by rewrite -kn_km_1 dvdn_subr ?dvdn_mull // ltnW // -subn_gt0 kn_km_1. Qed. Lemma modn_coprime k n : 0 < k -> (exists u, (k * u) %% n = 1) -> coprime k n. Proof. move=> k_gt0 [u Hu]; apply/coprimeP=> //. by exists (u, k * u %/ n); rewrite /= mulnC {1}(divn_eq (k * u) n) addKn. Qed. Lemma Gauss_dvd m n p : coprime m n -> (m * n %| p) = (m %| p) && (n %| p). Proof. by move=> co_mn; rewrite -muln_lcm_gcd (eqnP co_mn) muln1 dvdn_lcm. Qed. Lemma Gauss_dvdr m n p : coprime m n -> (m %| n * p) = (m %| p). Proof. case: n => [|n] co_mn; first by case: m co_mn => [|[]] // _; rewrite !dvd1n. by symmetry; rewrite mulnC -(@dvdn_pmul2r n.+1) ?Gauss_dvd // andbC dvdn_mull. Qed. Lemma Gauss_dvdl m n p : coprime m p -> (m %| n * p) = (m %| n). Proof. by rewrite mulnC; apply: Gauss_dvdr. Qed. Lemma dvdn_double_leq m n : m %| n -> odd m -> ~~ odd n -> 0 < n -> m.*2 <= n. Proof. move=> m_dv_n odd_m even_n n_gt0. by rewrite -muln2 dvdn_leq // Gauss_dvd ?coprimen2 ?m_dv_n ?dvdn2. Qed. Lemma dvdn_double_ltn m n : m %| n.-1 -> odd m -> odd n -> 1 < n -> m.*2 < n. Proof. by case: n => //; apply: dvdn_double_leq. Qed. Lemma Gauss_gcdr p m n : coprime p m -> gcdn p (m * n) = gcdn p n. Proof. move=> co_pm; apply/eqP; rewrite eqn_dvd !dvdn_gcd !dvdn_gcdl /=. rewrite andbC dvdn_mull ?dvdn_gcdr //= -(@Gauss_dvdr _ m) ?dvdn_gcdr //. by rewrite /coprime gcdnAC (eqnP co_pm) gcd1n. Qed. Lemma Gauss_gcdl p m n : coprime p n -> gcdn p (m * n) = gcdn p m. Proof. by move=> co_pn; rewrite mulnC Gauss_gcdr. Qed. Lemma coprime_mulr p m n : coprime p (m * n) = coprime p m && coprime p n. Proof. case co_pm: (coprime p m) => /=; first by rewrite /coprime Gauss_gcdr. apply/eqP=> co_p_mn; case/eqnP: co_pm; apply gcdn_def => // d dv_dp dv_dm. by rewrite -co_p_mn dvdn_gcd dv_dp dvdn_mulr. Qed. Lemma coprime_mull p m n : coprime (m * n) p = coprime m p && coprime n p. Proof. by rewrite -!(coprime_sym p) coprime_mulr. Qed. Lemma coprime_pexpl k m n : 0 < k -> coprime (m ^ k) n = coprime m n. Proof. case: k => // k _; elim: k => [|k IHk]; first by rewrite expn1. by rewrite expnS coprime_mull -IHk; case coprime. Qed. Lemma coprime_pexpr k m n : 0 < k -> coprime m (n ^ k) = coprime m n. Proof. by move=> k_gt0; rewrite !(coprime_sym m) coprime_pexpl. Qed. Lemma coprime_expl k m n : coprime m n -> coprime (m ^ k) n. Proof. by case: k => [|k] co_pm; rewrite ?coprime1n // coprime_pexpl. Qed. Lemma coprime_expr k m n : coprime m n -> coprime m (n ^ k). Proof. by rewrite !(coprime_sym m); apply: coprime_expl. Qed. Lemma coprime_dvdl m n p : m %| n -> coprime n p -> coprime m p. Proof. by case/dvdnP=> d ->; rewrite coprime_mull => /andP[]. Qed. Lemma coprime_dvdr m n p : m %| n -> coprime p n -> coprime p m. Proof. by rewrite !(coprime_sym p); apply: coprime_dvdl. Qed. Lemma coprime_egcdn n m : n > 0 -> coprime (egcdn n m).1 (egcdn n m).2. Proof. move=> n_gt0; case: (egcdnP m n_gt0) => kn km /= /eqP. have [/dvdnP[u defn] /dvdnP[v defm]] := (dvdn_gcdl n m, dvdn_gcdr n m). rewrite -[gcdn n m]mul1n {1}defm {1}defn !mulnA -mulnDl addnC. rewrite eqn_pmul2r ?gcdn_gt0 ?n_gt0 //; case: kn => // kn /eqP def_knu _. by apply/coprimeP=> //; exists (u, v); rewrite mulnC def_knu mulnC addnK. Qed. Lemma dvdn_pexp2r m n k : k > 0 -> (m ^ k %| n ^ k) = (m %| n). Proof. move=> k_gt0; apply/idP/idP=> [dv_mn_k|]; last exact: dvdn_exp2r. case: (posnP n) => [-> | n_gt0]; first by rewrite dvdn0. have [n' def_n] := dvdnP (dvdn_gcdr m n); set d := gcdn m n in def_n. have [m' def_m] := dvdnP (dvdn_gcdl m n); rewrite -/d in def_m. have d_gt0: d > 0 by rewrite gcdn_gt0 n_gt0 orbT. rewrite def_m def_n !expnMn dvdn_pmul2r ?expn_gt0 ?d_gt0 // in dv_mn_k. have: coprime (m' ^ k) (n' ^ k). rewrite coprime_pexpl // coprime_pexpr // /coprime -(eqn_pmul2r d_gt0) mul1n. by rewrite muln_gcdl -def_m -def_n. rewrite /coprime -gcdn_modr (eqnP dv_mn_k) gcdn0 -(exp1n k). by rewrite (inj_eq (expIn k_gt0)) def_m; move/eqP->; rewrite mul1n dvdn_gcdr. Qed. Section Chinese. (***********************************************************************) (* The chinese remainder theorem *) (***********************************************************************) Variables m1 m2 : nat. Hypothesis co_m12 : coprime m1 m2. Lemma chinese_remainder x y : (x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]). Proof. wlog le_yx : x y / y <= x; last by rewrite !eqn_mod_dvd // Gauss_dvd. by case/orP: (leq_total y x); last rewrite !(eq_sym (x %% _)); auto. Qed. (***********************************************************************) (* A function that solves the chinese remainder problem *) (***********************************************************************) Definition chinese r1 r2 := r1 * m2 * (egcdn m2 m1).1 + r2 * m1 * (egcdn m1 m2).1. Lemma chinese_modl r1 r2 : chinese r1 r2 = r1 %[mod m1]. Proof. rewrite /chinese; case: (posnP m2) co_m12 => [-> /eqnP | m2_gt0 _]. by rewrite gcdn0 => ->; rewrite !modn1. case: egcdnP => // k2 k1 def_m1 _. rewrite mulnAC -mulnA def_m1 gcdnC (eqnP co_m12) mulnDr mulnA muln1. by rewrite addnAC (mulnAC _ m1) -mulnDl modnMDl. Qed. Lemma chinese_modr r1 r2 : chinese r1 r2 = r2 %[mod m2]. Proof. rewrite /chinese; case: (posnP m1) co_m12 => [-> /eqnP | m1_gt0 _]. by rewrite gcd0n => ->; rewrite !modn1. case: (egcdnP m2) => // k1 k2 def_m2 _. rewrite addnC mulnAC -mulnA def_m2 (eqnP co_m12) mulnDr mulnA muln1. by rewrite addnAC (mulnAC _ m2) -mulnDl modnMDl. Qed. Lemma chinese_mod x : x = chinese (x %% m1) (x %% m2) %[mod m1 * m2]. Proof. apply/eqP; rewrite chinese_remainder //. by rewrite chinese_modl chinese_modr !modn_mod !eqxx. Qed. End Chinese.