(* (c) Copyright 2006-2015 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype. From mathcomp Require Import bigop ssralg ssrint div ssrnum rat poly closed_field polyrcf. From mathcomp Require Import matrix mxalgebra tuple mxpoly zmodp binomial realalg. (**********************************************************************) (* This files defines the extension R[i] of a real field R, *) (* and provide it a structure of numeric field with a norm operator. *) (* When R is a real closed field, it also provides a structure of *) (* algebraically closed field for R[i], using a proof by Derksen *) (* (cf comments below, thanks to Pierre Lairez for finding the paper) *) (**********************************************************************) Import GRing.Theory Num.Theory. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Reserved Notation "x +i* y" (at level 40, left associativity, format "x +i* y"). Reserved Notation "x -i* y" (at level 40, left associativity, format "x -i* y"). Reserved Notation "R [i]" (at level 2, left associativity, format "R [i]"). Local Notation sgr := Num.sg. Local Notation sqrtr := Num.sqrt. CoInductive complex (R : Type) : Type := Complex { Re : R; Im : R }. Definition real_complex_def (F : ringType) (phF : phant F) (x : F) := Complex x 0. Notation real_complex F := (@real_complex_def _ (Phant F)). Notation "x %:C" := (real_complex _ x) (at level 2, left associativity, format "x %:C") : ring_scope. Notation "x +i* y" := (Complex x y) : ring_scope. Notation "x -i* y" := (Complex x (- y)) : ring_scope. Notation "x *i " := (Complex 0 x) (at level 8, format "x *i") : ring_scope. Notation "''i'" := (Complex 0 1) : ring_scope. Notation "R [i]" := (complex R) (at level 2, left associativity, format "R [i]"). Module ComplexEqChoice. Section ComplexEqChoice. Variable R : Type. Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [::a; b]. Definition complex_of_sqR (x : seq R) := if x is [:: a; b] then Some (a +i* b) else None. Lemma complex_of_sqRK : pcancel sqR_of_complex complex_of_sqR. Proof. by case. Qed. End ComplexEqChoice. End ComplexEqChoice. Definition complex_eqMixin (R : eqType) := PcanEqMixin (@ComplexEqChoice.complex_of_sqRK R). Definition complex_choiceMixin (R : choiceType) := PcanChoiceMixin (@ComplexEqChoice.complex_of_sqRK R). Definition complex_countMixin (R : countType) := PcanCountMixin (@ComplexEqChoice.complex_of_sqRK R). Canonical Structure complex_eqType (R : eqType) := EqType R[i] (complex_eqMixin R). Canonical Structure complex_choiceType (R : choiceType) := ChoiceType R[i] (complex_choiceMixin R). Canonical Structure complex_countType (R : countType) := CountType R[i] (complex_countMixin R). Lemma eq_complex : forall (R : eqType) (x y : complex R), (x == y) = (Re x == Re y) && (Im x == Im y). Proof. move=> R [a b] [c d] /=. apply/eqP/andP; first by move=> [-> ->]; split. by case; move/eqP->; move/eqP->. Qed. Lemma complexr0 : forall (R : ringType) (x : R), x +i* 0 = x%:C. Proof. by []. Qed. Module ComplexField. Section ComplexField. Variable R : rcfType. Local Notation C := R[i]. Local Notation C0 := ((0 : R)%:C). Local Notation C1 := ((1 : R)%:C). Definition addc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in (a + c) +i* (b + d). Definition oppc (x : R[i]) := let: a +i* b := x in (- a) +i* (- b). Lemma addcC : commutative addc. Proof. by move=> [a b] [c d] /=; congr (_ +i* _); rewrite addrC. Qed. Lemma addcA : associative addc. Proof. by move=> [a b] [c d] [e f] /=; rewrite !addrA. Qed. Lemma add0c : left_id C0 addc. Proof. by move=> [a b] /=; rewrite !add0r. Qed. Lemma addNc : left_inverse C0 oppc addc. Proof. by move=> [a b] /=; rewrite !addNr. Qed. Definition complex_ZmodMixin := ZmodMixin addcA addcC add0c addNc. Canonical Structure complex_ZmodType := ZmodType R[i] complex_ZmodMixin. Definition mulc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in ((a * c) - (b * d)) +i* ((a * d) + (b * c)). Lemma mulcC : commutative mulc. Proof. move=> [a b] [c d] /=. by rewrite [c * b + _]addrC ![_ * c]mulrC ![_ * d]mulrC. Qed. Lemma mulcA : associative mulc. Proof. move=> [a b] [c d] [e f] /=. rewrite !mulrDr !mulrDl !mulrN !mulNr !mulrA !opprD -!addrA. by congr ((_ + _) +i* (_ + _)); rewrite !addrA addrAC; congr (_ + _); rewrite addrC. Qed. Definition invc (x : R[i]) := let: a +i* b := x in let n2 := (a ^+ 2 + b ^+ 2) in (a / n2) -i* (b / n2). Lemma mul1c : left_id C1 mulc. Proof. by move=> [a b] /=; rewrite !mul1r !mul0r subr0 addr0. Qed. Lemma mulc_addl : left_distributive mulc addc. Proof. move=> [a b] [c d] [e f] /=; rewrite !mulrDl !opprD -!addrA. by congr ((_ + _) +i* (_ + _)); rewrite addrCA. Qed. Lemma nonzero1c : C1 != C0. Proof. by rewrite eq_complex /= oner_eq0. Qed. Definition complex_comRingMixin := ComRingMixin mulcA mulcC mul1c mulc_addl nonzero1c. Canonical Structure complex_Ring := Eval hnf in RingType R[i] complex_comRingMixin. Canonical Structure complex_comRing := Eval hnf in ComRingType R[i] mulcC. Lemma mulVc : forall x, x != C0 -> mulc (invc x) x = C1. Proof. move=> [a b]; rewrite eq_complex => /= hab; rewrite !mulNr opprK. rewrite ![_ / _ * _]mulrAC [b * a]mulrC subrr complexr0 -mulrDl mulfV //. by rewrite paddr_eq0 -!expr2 ?expf_eq0 ?sqr_ge0. Qed. Lemma invc0 : invc C0 = C0. Proof. by rewrite /= !mul0r oppr0. Qed. Definition ComplexFieldUnitMixin := FieldUnitMixin mulVc invc0. Canonical Structure complex_unitRing := Eval hnf in UnitRingType C ComplexFieldUnitMixin. Canonical Structure complex_comUnitRing := Eval hnf in [comUnitRingType of R[i]]. Lemma field_axiom : GRing.Field.mixin_of complex_unitRing. Proof. by []. Qed. Definition ComplexFieldIdomainMixin := (FieldIdomainMixin field_axiom). Canonical Structure complex_iDomain := Eval hnf in IdomainType R[i] (FieldIdomainMixin field_axiom). Canonical Structure complex_fieldMixin := FieldType R[i] field_axiom. Ltac simpc := do ? [ rewrite -[(_ +i* _) - (_ +i* _)]/(_ +i* _) | rewrite -[(_ +i* _) + (_ +i* _)]/(_ +i* _) | rewrite -[(_ +i* _) * (_ +i* _)]/(_ +i* _)]. Lemma real_complex_is_rmorphism : rmorphism (real_complex R). Proof. split; [|split=> //] => a b /=; simpc; first by rewrite subrr. by rewrite !mulr0 !mul0r addr0 subr0. Qed. Canonical Structure real_complex_rmorphism := RMorphism real_complex_is_rmorphism. Canonical Structure real_complex_additive := Additive real_complex_is_rmorphism. Lemma Re_is_additive : additive (@Re R). Proof. by case=> a1 b1; case=> a2 b2. Qed. Canonical Structure Re_additive := Additive Re_is_additive. Lemma Im_is_additive : additive (@Im R). Proof. by case=> a1 b1; case=> a2 b2. Qed. Canonical Structure Im_additive := Additive Im_is_additive. Definition lec (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in (d == b) && (a <= c). Definition ltc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in (d == b) && (a < c). Definition normc (x : R[i]) : R := let: a +i* b := x in sqrtr (a ^+ 2 + b ^+ 2). Notation normC x := (normc x)%:C. Lemma ltc0_add : forall x y, ltc 0 x -> ltc 0 y -> ltc 0 (x + y). Proof. move=> [a b] [c d] /= /andP [/eqP-> ha] /andP [/eqP-> hc]. by rewrite addr0 eqxx addr_gt0. Qed. Lemma eq0_normc x : normc x = 0 -> x = 0. Proof. case: x => a b /= /eqP; rewrite sqrtr_eq0 ler_eqVlt => /orP [|]; last first. by rewrite ltrNge addr_ge0 ?sqr_ge0. by rewrite paddr_eq0 ?sqr_ge0 ?expf_eq0 //= => /andP[/eqP -> /eqP ->]. Qed. Lemma eq0_normC x : normC x = 0 -> x = 0. Proof. by case=> /eq0_normc. Qed. Lemma ge0_lec_total x y : lec 0 x -> lec 0 y -> lec x y || lec y x. Proof. move: x y => [a b] [c d] /= /andP[/eqP -> a_ge0] /andP[/eqP -> c_ge0]. by rewrite eqxx ler_total. Qed. (* :TODO: put in ssralg ? *) Lemma exprM (a b : R) : (a * b) ^+ 2 = a ^+ 2 * b ^+ 2. Proof. by rewrite mulrACA. Qed. Lemma normcM x y : normc (x * y) = normc x * normc y. Proof. move: x y => [a b] [c d] /=; rewrite -sqrtrM ?addr_ge0 ?sqr_ge0 //. rewrite sqrrB sqrrD mulrDl !mulrDr -!exprM. rewrite mulrAC [b * d]mulrC !mulrA. suff -> : forall (u v w z t : R), (u - v + w) + (z + v + t) = u + w + (z + t). by rewrite addrAC !addrA. by move=> u v w z t; rewrite [_ - _ + _]addrAC [z + v]addrC !addrA addrNK. Qed. Lemma normCM x y : normC (x * y) = normC x * normC y. Proof. by rewrite -rmorphM normcM. Qed. Lemma subc_ge0 x y : lec 0 (y - x) = lec x y. Proof. by move: x y => [a b] [c d] /=; simpc; rewrite subr_ge0 subr_eq0. Qed. Lemma lec_def x y : lec x y = (normC (y - x) == y - x). Proof. rewrite -subc_ge0; move: (_ - _) => [a b]; rewrite eq_complex /= eq_sym. have [<- /=|_] := altP eqP; last by rewrite andbF. by rewrite [0 ^+ _]mul0r addr0 andbT sqrtr_sqr ger0_def. Qed. Lemma ltc_def x y : ltc x y = (y != x) && lec x y. Proof. move: x y => [a b] [c d] /=; simpc; rewrite eq_complex /=. by have [] := altP eqP; rewrite ?(andbF, andbT) //= ltr_def. Qed. Lemma lec_normD x y : lec (normC (x + y)) (normC x + normC y). Proof. move: x y => [a b] [c d] /=; simpc; rewrite addr0 eqxx /=. rewrite -(@ler_pexpn2r _ 2) -?topredE /= ?(ler_paddr, sqrtr_ge0) //. rewrite [X in _ <= X] sqrrD ?sqr_sqrtr; do ?by rewrite ?(ler_paddr, sqrtr_ge0, sqr_ge0, mulr_ge0) //. rewrite -addrA addrCA (monoRL (addrNK _) (ler_add2r _)) !sqrrD. set u := _ *+ 2; set v := _ *+ 2. rewrite [a ^+ _ + _ + _]addrAC [b ^+ _ + _ + _]addrAC -addrA. rewrite [u + _] addrC [X in _ - X]addrAC [b ^+ _ + _]addrC. rewrite [u]lock [v]lock !addrA; set x := (a ^+ 2 + _ + _ + _). rewrite -addrA addrC addKr -!lock addrC. have [huv|] := ger0P (u + v); last first. by move=> /ltrW /ler_trans -> //; rewrite pmulrn_lge0 // mulr_ge0 ?sqrtr_ge0. rewrite -(@ler_pexpn2r _ 2) -?topredE //=; last first. by rewrite ?(pmulrn_lge0, mulr_ge0, sqrtr_ge0) //. rewrite -mulr_natl !exprM !sqr_sqrtr ?(ler_paddr, sqr_ge0) //. rewrite -mulrnDl -mulr_natl !exprM ler_pmul2l ?exprn_gt0 ?ltr0n //. rewrite sqrrD mulrDl !mulrDr -!exprM addrAC. rewrite [_ + (b * d) ^+ 2]addrC [X in _ <= X]addrAC -!addrA !ler_add2l. rewrite mulrAC mulrA -mulrA mulrACA mulrC. by rewrite -subr_ge0 addrAC -sqrrB sqr_ge0. Qed. Definition complex_POrderedMixin := NumMixin lec_normD ltc0_add eq0_normC ge0_lec_total normCM lec_def ltc_def. Canonical Structure complex_numDomainType := NumDomainType R[i] complex_POrderedMixin. End ComplexField. End ComplexField. Canonical complex_ZmodType (R : rcfType) := ZmodType R[i] (ComplexField.complex_ZmodMixin R). Canonical complex_Ring (R : rcfType) := Eval hnf in RingType R[i] (ComplexField.complex_comRingMixin R). Canonical complex_comRing (R : rcfType) := Eval hnf in ComRingType R[i] (@ComplexField.mulcC R). Canonical complex_unitRing (R : rcfType) := Eval hnf in UnitRingType R[i] (ComplexField.ComplexFieldUnitMixin R). Canonical complex_comUnitRing (R : rcfType) := Eval hnf in [comUnitRingType of R[i]]. Canonical complex_iDomain (R : rcfType) := Eval hnf in IdomainType R[i] (FieldIdomainMixin (@ComplexField.field_axiom R)). Canonical complex_fieldType (R : rcfType) := FieldType R[i] (@ComplexField.field_axiom R). Canonical complex_numDomainType (R : rcfType) := NumDomainType R[i] (ComplexField.complex_POrderedMixin R). Canonical complex_numFieldType (R : rcfType) := [numFieldType of complex R]. Canonical ComplexField.real_complex_rmorphism. Canonical ComplexField.real_complex_additive. Canonical ComplexField.Re_additive. Canonical ComplexField.Im_additive. Definition conjc {R : ringType} (x : R[i]) := let: a +i* b := x in a -i* b. Notation "x ^*" := (conjc x) (at level 2, format "x ^*"). Ltac simpc := do ? [ rewrite -[(_ +i* _) - (_ +i* _)]/(_ +i* _) | rewrite -[(_ +i* _) + (_ +i* _)]/(_ +i* _) | rewrite -[(_ +i* _) * (_ +i* _)]/(_ +i* _) | rewrite -[(_ +i* _) <= (_ +i* _)]/((_ == _) && (_ <= _)) | rewrite -[(_ +i* _) < (_ +i* _)]/((_ == _) && (_ < _)) | rewrite -[`|_ +i* _|]/(sqrtr (_ + _))%:C | rewrite (mulrNN, mulrN, mulNr, opprB, opprD, mulr0, mul0r, subr0, sub0r, addr0, add0r, mulr1, mul1r, subrr, opprK, oppr0, eqxx) ]. Section ComplexTheory. Variable R : rcfType. Lemma ReiNIm : forall x : R[i], Re (x * 'i) = - Im x. Proof. by case=> a b; simpc. Qed. Lemma ImiRe : forall x : R[i], Im (x * 'i) = Re x. Proof. by case=> a b; simpc. Qed. Lemma complexE x : x = (Re x)%:C + 'i * (Im x)%:C :> R[i]. Proof. by case: x => *; simpc. Qed. Lemma real_complexE x : x%:C = x +i* 0 :> R[i]. Proof. done. Qed. Lemma sqr_i : 'i ^+ 2 = -1 :> R[i]. Proof. by rewrite exprS; simpc; rewrite -real_complexE rmorphN. Qed. Lemma complexI : injective (real_complex R). Proof. by move=> x y []. Qed. Lemma ler0c (x : R) : (0 <= x%:C) = (0 <= x). Proof. by simpc. Qed. Lemma lecE : forall x y : R[i], (x <= y) = (Im y == Im x) && (Re x <= Re y). Proof. by move=> [a b] [c d]. Qed. Lemma ltcE : forall x y : R[i], (x < y) = (Im y == Im x) && (Re x < Re y). Proof. by move=> [a b] [c d]. Qed. Lemma lecR : forall x y : R, (x%:C <= y%:C) = (x <= y). Proof. by move=> x y; simpc. Qed. Lemma ltcR : forall x y : R, (x%:C < y%:C) = (x < y). Proof. by move=> x y; simpc. Qed. Lemma conjc_is_rmorphism : rmorphism (@conjc R). Proof. split=> [[a b] [c d]|] /=; first by simpc; rewrite [d - _]addrC. by split=> [[a b] [c d]|] /=; simpc. Qed. Canonical conjc_rmorphism := RMorphism conjc_is_rmorphism. Canonical conjc_additive := Additive conjc_is_rmorphism. Lemma conjcK : involutive (@conjc R). Proof. by move=> [a b] /=; rewrite opprK. Qed. Lemma mulcJ_ge0 (x : R[i]) : 0 <= x * x ^*. Proof. by move: x=> [a b]; simpc; rewrite mulrC addNr eqxx addr_ge0 ?sqr_ge0. Qed. Lemma conjc_real (x : R) : x%:C^* = x%:C. Proof. by rewrite /= oppr0. Qed. Lemma ReJ_add (x : R[i]) : (Re x)%:C = (x + x^*) / 2%:R. Proof. case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=. rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA. by rewrite divff ?mulr1 // -natrM pnatr_eq0. Qed. Lemma ImJ_sub (x : R[i]) : (Im x)%:C = (x^* - x) / 2%:R * 'i. Proof. case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=. rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA. by rewrite divff ?mulr1 ?opprK // -natrM pnatr_eq0. Qed. Lemma ger0_Im (x : R[i]) : 0 <= x -> Im x = 0. Proof. by move: x=> [a b] /=; simpc => /andP [/eqP]. Qed. (* Todo : extend theory of : *) (* - signed exponents *) Lemma conj_ge0 : forall x : R[i], (0 <= x ^*) = (0 <= x). Proof. by move=> [a b] /=; simpc; rewrite oppr_eq0. Qed. Lemma conjc_nat : forall n, (n%:R : R[i])^* = n%:R. Proof. exact: rmorph_nat. Qed. Lemma conjc0 : (0 : R[i]) ^* = 0. Proof. exact: (conjc_nat 0). Qed. Lemma conjc1 : (1 : R[i]) ^* = 1. Proof. exact: (conjc_nat 1). Qed. Lemma conjc_eq0 : forall x : R[i], (x ^* == 0) = (x == 0). Proof. by move=> [a b]; rewrite !eq_complex /= eqr_oppLR oppr0. Qed. Lemma conjc_inv: forall x : R[i], (x^-1)^* = (x^* )^-1. Proof. exact: fmorphV. Qed. Lemma complex_root_conj (p : {poly R[i]}) (x : R[i]) : root (map_poly conjc p) x = root p x^*. Proof. by rewrite /root -{1}[x]conjcK horner_map /= conjc_eq0. Qed. Lemma complex_algebraic_trans (T : comRingType) (toR : {rmorphism T -> R}) : integralRange toR -> integralRange (real_complex R \o toR). Proof. set f := _ \o _ => R_integral [a b]. have integral_real x : integralOver f (x%:C) by apply: integral_rmorph. rewrite [_ +i* _]complexE. apply: integral_add => //; apply: integral_mul => //=. exists ('X^2 + 1). by rewrite monicE lead_coefDl ?size_polyXn ?size_poly1 ?lead_coefXn. by rewrite rmorphD rmorph1 /= ?map_polyXn rootE !hornerE -expr2 sqr_i addNr. Qed. Lemma normc_def (z : R[i]) : `|z| = (sqrtr ((Re z)^+2 + (Im z)^+2))%:C. Proof. by case: z. Qed. Lemma add_Re2_Im2 (z : R[i]) : ((Re z)^+2 + (Im z)^+2)%:C = `|z|^+2. Proof. by rewrite normc_def -rmorphX sqr_sqrtr ?addr_ge0 ?sqr_ge0. Qed. Lemma addcJ (z : R[i]) : z + z^* = 2%:R * (Re z)%:C. Proof. by rewrite ReJ_add mulrC mulfVK ?pnatr_eq0. Qed. Lemma subcJ (z : R[i]) : z - z^* = 2%:R * (Im z)%:C * 'i. Proof. rewrite ImJ_sub mulrCA mulrA mulfVK ?pnatr_eq0 //. by rewrite -mulrA ['i * _]sqr_i mulrN1 opprB. Qed. End ComplexTheory. (* Section RcfDef. *) (* Variable R : realFieldType. *) (* Notation C := (complex R). *) (* Definition rcf_odd := forall (p : {poly R}), *) (* ~~odd (size p) -> {x | p.[x] = 0}. *) (* Definition rcf_square := forall x : R, *) (* {y | (0 <= y) && if 0 <= x then (y ^ 2 == x) else y == 0}. *) (* Lemma rcf_odd_sqr_from_ivt : rcf_axiom R -> rcf_odd * rcf_square. *) (* Proof. *) (* move=> ivt. *) (* split. *) (* move=> p sp. *) (* move: (ivt p). *) (* admit. *) (* move=> x. *) (* case: (boolP (0 <= x)) (@ivt ('X^2 - x%:P) 0 (1 + x))=> px; last first. *) (* by move=> _; exists 0; rewrite lerr eqxx. *) (* case. *) (* * by rewrite ler_paddr ?ler01. *) (* * rewrite !horner_lin oppr_le0 px /=. *) (* rewrite subr_ge0 (@ler_trans _ (1 + x)) //. *) (* by rewrite ler_paddl ?ler01 ?lerr. *) (* by rewrite ler_pemulr // addrC -subr_ge0 ?addrK // subr0 ler_paddl ?ler01. *) (* * move=> y hy; rewrite /root !horner_lin; move/eqP. *) (* move/(canRL (@addrNK _ _)); rewrite add0r=> <-. *) (* by exists y; case/andP: hy=> -> _; rewrite eqxx. *) (* Qed. *) (* Lemma ivt_from_closed : GRing.ClosedField.axiom [ringType of C] -> rcf_axiom R. *) (* Proof. *) (* rewrite /GRing.ClosedField.axiom /= => hclosed. *) (* move=> p a b hab. *) (* Admitted. *) (* Lemma closed_form_rcf_odd_sqr : rcf_odd -> rcf_square *) (* -> GRing.ClosedField.axiom [ringType of C]. *) (* Proof. *) (* Admitted. *) (* Lemma closed_form_ivt : rcf_axiom R -> GRing.ClosedField.axiom [ringType of C]. *) (* Proof. *) (* move/rcf_odd_sqr_from_ivt; case. *) (* exact: closed_form_rcf_odd_sqr. *) (* Qed. *) (* End RcfDef. *) Section ComplexClosed. Variable R : rcfType. Definition sqrtc (x : R[i]) : R[i] := let: a +i* b := x in let sgr1 b := if b == 0 then 1 else sgr b in let r := sqrtr (a^+2 + b^+2) in (sqrtr ((r + a)/2%:R)) +i* (sgr1 b * sqrtr ((r - a)/2%:R)). Lemma sqr_sqrtc : forall x, (sqrtc x) ^+ 2 = x. Proof. have sqr: forall x : R, x ^+ 2 = x * x. by move=> x; rewrite exprS expr1. case=> a b; rewrite exprS expr1; simpc. have F0: 2%:R != 0 :> R by rewrite pnatr_eq0. have F1: 0 <= 2%:R^-1 :> R by rewrite invr_ge0 ler0n. have F2: `|a| <= sqrtr (a^+2 + b^+2). rewrite -sqrtr_sqr ler_wsqrtr //. by rewrite addrC -subr_ge0 addrK exprn_even_ge0. have F3: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) - a) / 2%:R. rewrite mulr_ge0 // subr_ge0 (ler_trans _ F2) //. by rewrite -(maxrN a) ler_maxr lerr. have F4: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) + a) / 2%:R. rewrite mulr_ge0 // -{2}[a]opprK subr_ge0 (ler_trans _ F2) //. by rewrite -(maxrN a) ler_maxr lerr orbT. congr (_ +i* _); set u := if _ then _ else _. rewrite mulrCA !mulrA. have->: (u * u) = 1. rewrite /u; case: (altP (_ =P _)); rewrite ?mul1r //. by rewrite -expr2 sqr_sg => ->. rewrite mul1r -!sqr !sqr_sqrtr //. rewrite [_+a]addrC -mulrBl opprD addrA addrK. by rewrite opprK -mulr2n -mulr_natl [_*a]mulrC mulfK. rewrite mulrCA -mulrA -mulrDr [sqrtr _ * _]mulrC. rewrite -mulr2n -sqrtrM // mulrAC !mulrA ?[_ * (_ - _)]mulrC -subr_sqr. rewrite sqr_sqrtr; last first. by rewrite ler_paddr // exprn_even_ge0. rewrite [_^+2 + _]addrC addrK -mulrA -expr2 sqrtrM ?exprn_even_ge0 //. rewrite !sqrtr_sqr -mulr_natr. rewrite [`|_^-1|]ger0_norm // -mulrA [_ * _%:R]mulrC divff //. rewrite mulr1 /u; case: (_ =P _)=>[->|]. by rewrite normr0 mulr0. by rewrite mulr_sg_norm. Qed. Lemma sqrtc_sqrtr : forall (x : R[i]), 0 <= x -> sqrtc x = (sqrtr (Re x))%:C. Proof. move=> [a b] /andP [/eqP->] /= a_ge0. rewrite eqxx mul1r [0 ^+ _]exprS mul0r addr0 sqrtr_sqr. rewrite ger0_norm // subrr mul0r sqrtr0 -mulr2n. by rewrite -[_*+2]mulr_natr mulfK // pnatr_eq0. Qed. Lemma sqrtc0 : sqrtc 0 = 0. Proof. by rewrite sqrtc_sqrtr ?lerr // sqrtr0. Qed. Lemma sqrtc1 : sqrtc 1 = 1. Proof. by rewrite sqrtc_sqrtr ?ler01 // sqrtr1. Qed. Lemma sqrtN1 : sqrtc (-1) = 'i. Proof. rewrite /sqrtc /= oppr0 eqxx [0^+_]exprS mulr0 addr0. rewrite exprS expr1 mulN1r opprK sqrtr1 subrr mul0r sqrtr0. by rewrite mul1r -mulr2n divff ?sqrtr1 // pnatr_eq0. Qed. Lemma sqrtc_ge0 (x : R[i]) : (0 <= sqrtc x) = (0 <= x). Proof. apply/idP/idP=> [psx|px]; last first. by rewrite sqrtc_sqrtr // lecR sqrtr_ge0. by rewrite -[x]sqr_sqrtc exprS expr1 mulr_ge0. Qed. Lemma sqrtc_eq0 (x : R[i]) : (sqrtc x == 0) = (x == 0). Proof. apply/eqP/eqP=> [eqs|->]; last by rewrite sqrtc0. by rewrite -[x]sqr_sqrtc eqs exprS mul0r. Qed. Lemma normcE x : `|x| = sqrtc (x * x^*). Proof. case: x=> a b; simpc; rewrite [b * a]mulrC addNr sqrtc_sqrtr //. by simpc; rewrite /= addr_ge0 ?sqr_ge0. Qed. Lemma sqr_normc (x : R[i]) : (`|x| ^+ 2) = x * x^*. Proof. by rewrite normcE sqr_sqrtc. Qed. Lemma normc_ge_Re (x : R[i]) : `|Re x|%:C <= `|x|. Proof. by case: x => a b; simpc; rewrite -sqrtr_sqr ler_wsqrtr // ler_addl sqr_ge0. Qed. Lemma normcJ (x : R[i]) : `|x^*| = `|x|. Proof. by case: x => a b; simpc; rewrite /= sqrrN. Qed. Lemma invc_norm (x : R[i]) : x^-1 = `|x|^-2 * x^*. Proof. case: (altP (x =P 0)) => [->|dx]; first by rewrite rmorph0 mulr0 invr0. apply: (mulIf dx); rewrite mulrC divff // -mulrA [_^* * _]mulrC -(sqr_normc x). by rewrite mulVf // expf_neq0 ?normr_eq0. Qed. Lemma canonical_form (a b c : R[i]) : a != 0 -> let d := b ^+ 2 - 4%:R * a * c in let r1 := (- b - sqrtc d) / 2%:R / a in let r2 := (- b + sqrtc d) / 2%:R / a in a *: 'X^2 + b *: 'X + c%:P = a *: (('X - r1%:P) * ('X - r2%:P)). Proof. move=> a_neq0 d r1 r2. rewrite !(mulrDr, mulrDl, mulNr, mulrN, opprK, scalerDr). rewrite [_ * _%:P]mulrC !mul_polyC !scalerN !scalerA -!addrA; congr (_ + _). rewrite addrA; congr (_ + _). rewrite -opprD -scalerDl -scaleNr; congr(_ *: _). rewrite ![a * _]mulrC !divfK // !mulrDl addrACA !mulNr addNr addr0. by rewrite -opprD opprK -mulrDr -mulr2n -mulr_natl divff ?mulr1 ?pnatr_eq0. symmetry; rewrite -!alg_polyC scalerA; congr (_%:A). rewrite [a * _]mulrC divfK // /r2 mulrA mulrACA -invfM -natrM -subr_sqr. rewrite sqr_sqrtc sqrrN /d opprB addrC addrNK -2!mulrA. by rewrite mulrACA -natf_div // mul1r mulrAC divff ?mul1r. Qed. Lemma monic_canonical_form (b c : R[i]) : let d := b ^+ 2 - 4%:R * c in let r1 := (- b - sqrtc d) / 2%:R in let r2 := (- b + sqrtc d) / 2%:R in 'X^2 + b *: 'X + c%:P = (('X - r1%:P) * ('X - r2%:P)). Proof. by rewrite /= -['X^2]scale1r canonical_form ?oner_eq0 // scale1r mulr1 !divr1. Qed. Section extramx. (* missing lemmas from matrix.v or mxalgebra.v *) Lemma mul_mx_rowfree_eq0 (K : fieldType) (m n p: nat) (W : 'M[K]_(m,n)) (V : 'M[K]_(n,p)) : row_free V -> (W *m V == 0) = (W == 0). Proof. by move=> free; rewrite -!mxrank_eq0 mxrankMfree ?mxrank_eq0. Qed. Lemma sub_sums_genmxP (F : fieldType) (I : finType) (P : pred I) (m n : nat) (A : 'M[F]_(m, n)) (B_ : I -> 'M_(m, n)) : reflect (exists u_ : I -> 'M_m, A = \sum_(i | P i) u_ i *m B_ i) (A <= \sum_(i | P i) <>)%MS. Proof. apply: (iffP idP); last first. by move=> [u_ ->]; rewrite summx_sub_sums // => i _; rewrite genmxE submxMl. move=> /sub_sumsmxP [u_ hA]. have Hu i : exists v, u_ i *m <>%MS = v *m B_ i. by apply/submxP; rewrite (submx_trans (submxMl _ _)) ?genmxE. exists (fun i => projT1 (sig_eqW (Hu i))); rewrite hA. by apply: eq_bigr => i /= P_i; case: sig_eqW. Qed. Lemma mulmxP (K : fieldType) (m n : nat) (A B : 'M[K]_(m, n)) : reflect (forall u : 'rV__, u *m A = u *m B) (A == B). Proof. apply: (iffP eqP) => [-> //|eqAB]. apply: (@row_full_inj _ _ _ _ 1%:M); first by rewrite row_full_unit unitmx1. by apply/row_matrixP => i; rewrite !row_mul eqAB. Qed. Section Skew. Variable (K : numFieldType). Implicit Types (phK : phant K) (n : nat). Definition skew_vec n i j : 'rV[K]_(n * n) := (mxvec ((delta_mx i j)) - (mxvec (delta_mx j i))). Definition skew_def phK n : 'M[K]_(n * n) := (\sum_(i | ((i.2 : 'I__) < (i.1 : 'I__))%N) <>)%MS. Variable (n : nat). Local Notation skew := (@skew_def (Phant K) n). Lemma skew_direct_sum : mxdirect skew. Proof. apply/mxdirect_sumsE => /=; split => [i _|]; first exact: mxdirect_trivial. apply/mxdirect_sumsP => [] [i j] /= lt_ij; apply/eqP; rewrite -submx0. apply/rV_subP => v; rewrite sub_capmx => /andP []; rewrite !genmxE. move=> /submxP [w ->] /sub_sums_genmxP [/= u_]. move/matrixP => /(_ 0 (mxvec_index i j)); rewrite !mxE /= big_ord1. rewrite /skew_vec /= !mxvec_delta !mxE !eqxx /=. have /(_ _ _ (_, _) (_, _)) /= eq_mviE := inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))). rewrite eq_mviE xpair_eqE -!val_eqE /= eq_sym andbb. rewrite ltn_eqF // subr0 mulr1 summxE big1. rewrite [w as X in X *m _]mx11_scalar => ->. by rewrite mul_scalar_mx scale0r submx0. move=> [i' j'] /= /andP[lt_j'i']. rewrite xpair_eqE /= => neq'_ij. rewrite /= !mxvec_delta !mxE big_ord1 !mxE !eqxx !eq_mviE. rewrite !xpair_eqE /= [_ == i']eq_sym [_ == j']eq_sym (negPf neq'_ij) /=. set z := (_ && _); suff /negPf -> : ~~ z by rewrite subrr mulr0. by apply: contraL lt_j'i' => /andP [/eqP <- /eqP <-]; rewrite ltnNge ltnW. Qed. Hint Resolve skew_direct_sum. Lemma rank_skew : \rank skew = (n * n.-1)./2. Proof. rewrite /skew (mxdirectP _) //= -bin2 -triangular_sum big_mkord. rewrite (eq_bigr (fun _ => 1%N)); last first. move=> [i j] /= lt_ij; rewrite genmxE. apply/eqP; rewrite eqn_leq rank_leq_row /= lt0n mxrank_eq0. rewrite /skew_vec /= !mxvec_delta /= subr_eq0. set j1 := mxvec_index _ _. apply/negP => /eqP /matrixP /(_ 0 j1) /=; rewrite !mxE eqxx /=. have /(_ _ _ (_, _) (_, _)) -> := inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))). rewrite xpair_eqE -!val_eqE /= eq_sym andbb ltn_eqF //. by move/eqP; rewrite oner_eq0. transitivity (\sum_(i < n) (\sum_(j < n | j < i) 1))%N. by rewrite pair_big_dep. apply: eq_bigr => [] [[|i] Hi] _ /=; first by rewrite big1. rewrite (eq_bigl _ _ (fun _ => ltnS _ _)). have [n_eq0|n_gt0] := posnP n; first by move: Hi (Hi); rewrite {1}n_eq0. rewrite -[n]prednK // big_ord_narrow_leq /=. by rewrite -ltnS prednK // (leq_trans _ Hi). by rewrite sum_nat_const card_ord muln1. Qed. Lemma skewP (M : 'rV_(n * n)) : reflect ((vec_mx M)^T = - vec_mx M) (M <= skew)%MS. Proof. apply: (iffP idP). move/sub_sumsmxP => [v ->]; rewrite !linear_sum /=. apply: eq_bigr => [] [i j] /= lt_ij; rewrite !mulmx_sum_row !linear_sum /=. apply: eq_bigr => k _; rewrite !linearZ /=; congr (_ *: _) => {v}. set r := << _ >>%MS; move: (row _ _) (row_sub k r) => v. move: @r; rewrite /= genmxE => /sub_rVP [a ->]; rewrite !linearZ /=. by rewrite /skew_vec !linearB /= !mxvecK !scalerN opprK addrC !trmx_delta. move=> skewM; pose M' := vec_mx M. pose xM i j := (M' i j - M' j i) *: skew_vec i j. suff -> : M = 2%:R^-1 *: (\sum_(i | true && ((i.2 : 'I__) < (i.1 : 'I__))%N) xM i.1 i.2). rewrite scalemx_sub // summx_sub_sums // => [] [i j] /= lt_ij. by rewrite scalemx_sub // genmxE. rewrite /xM /= /skew_vec (eq_bigr _ (fun _ _ => scalerBr _ _ _)). rewrite big_split /= sumrN !(eq_bigr _ (fun _ _ => scalerBl _ _ _)). rewrite !big_split /= !sumrN opprD ?opprK addrACA [- _ + _]addrC. rewrite -!sumrN -2!big_split /=. rewrite /xM /= /skew_vec -!(eq_bigr _ (fun _ _ => scalerBr _ _ _)). apply: (can_inj vec_mxK); rewrite !(linearZ, linearB, linearD, linear_sum) /=. have -> /= : vec_mx M = 2%:R^-1 *: (M' - M'^T). by rewrite skewM opprK -mulr2n -scaler_nat scalerA mulVf ?pnatr_eq0 ?scale1r. rewrite {1 2}[M']matrix_sum_delta; congr (_ *: _). rewrite pair_big /= !linear_sum /= -big_split /=. rewrite (bigID (fun ij => (ij.2 : 'I__) < (ij.1 : 'I__))%N) /=; congr (_ + _). apply: eq_bigr => [] [i j] /= lt_ij. by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr. rewrite (bigID (fun ij => (ij.1 : 'I__) == (ij.2 : 'I__))%N) /=. rewrite big1 ?add0r; last first. by move=> [i j] /= /andP[_ /eqP ->]; rewrite linearZ /= trmx_delta subrr. rewrite (@reindex_inj _ _ _ _ (fun ij => (ij.2, ij.1))) /=; last first. by move=> [? ?] [? ?] [] -> ->. apply: eq_big => [] [i j] /=; first by rewrite -leqNgt ltn_neqAle andbC. by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr. Qed. End Skew. Notation skew K n := (@skew_def _ (Phant K) n). Section Companion. Variable (K : fieldType). Lemma companion_subproof (p : {poly K}) : {M : 'M[K]_((size p).-1)| p \is monic -> char_poly M = p}. Proof. have simp := (castmxE, mxE, castmx_id, cast_ord_id). case Hsp: (size p) => [|sp] /=. move/eqP: Hsp; rewrite size_poly_eq0 => /eqP ->. by exists 0; rewrite qualifE lead_coef0 eq_sym oner_eq0. case: sp => [|sp] in Hsp *. move: Hsp => /eqP/size_poly1P/sig2_eqW [c c_neq0 ->]. by exists ((-c)%:M); rewrite monicE lead_coefC => /eqP ->; apply: det_mx00. have addn1n n : (n + 1 = 1 + n)%N by rewrite addn1. exists (castmx (erefl _, addn1n _) (block_mx (\row_(i < sp) - p`_(sp - i)) (-p`_0)%:M 1%:M 0)). elim/poly_ind: p sp Hsp (addn1n _) => [|p c IHp] sp; first by rewrite size_poly0. rewrite size_MXaddC. have [->|p_neq0] //= := altP eqP; first by rewrite size_poly0; case: ifP. move=> [Hsp] eq_cast. rewrite monicE lead_coefDl ?size_polyC ?size_mul ?polyX_eq0 //; last first. by rewrite size_polyX addn2 Hsp ltnS (leq_trans (leq_b1 _)). rewrite lead_coefMX -monicE => p_monic. rewrite -/_`_0 coefD coefMX coefC eqxx add0r. case: sp => [|sp] in Hsp p_neq0 p_monic eq_cast *. move: Hsp p_monic => /eqP/size_poly1P [l l_neq0 ->]. rewrite monicE lead_coefC => /eqP ->; rewrite mul1r. rewrite /char_poly /char_poly_mx thinmx0 flatmx0 castmx_id. set b := (block_mx _ _ _ _); rewrite [map_mx _ b]map_block_mx => {b}. rewrite !map_mx0 map_scalar_mx (@opp_block_mx _ 1 0 0 1) !oppr0. set b := block_mx _ _ _ _; rewrite (_ : b = c%:P%:M); last first. apply/matrixP => i j; rewrite !mxE; case: splitP => k /= Hk; last first. by move: (ltn_ord i); rewrite Hk. rewrite !ord1 !mxE; case: splitP => {k Hk} k /= Hk; first by move: (ltn_ord k). by rewrite ord1 !mxE mulr1n rmorphN opprK. by rewrite -rmorphD det_scalar. rewrite /char_poly /char_poly_mx (expand_det_col _ ord_max). rewrite big_ord_recr /= big_ord_recl //= big1 ?simp; last first. move=> i _; rewrite !simp. case: splitP => k /=; first by rewrite /bump leq0n ord1. rewrite /bump leq0n => [] [Hik]; rewrite !simp. case: splitP => l /=; first by move/eqP; rewrite gtn_eqF. rewrite !ord1 addn0 => _ {l}; rewrite !simp -!val_eqE /=. by rewrite /bump leq0n ltn_eqF ?ltnS ?add1n // mulr0n subrr mul0r. case: splitP => i //=; rewrite !ord1 !simp => _ {i}. case: splitP => i //=; first by move/eqP; rewrite gtn_eqF. rewrite ord1 !simp => {i}. case: splitP => i //=; rewrite ?ord1 ?simp // => /esym [eq_i_sp] _. case: splitP => j //=; first by move/eqP; rewrite gtn_eqF. rewrite ord1 !simp => {j} _. rewrite eqxx mulr0n ?mulr1n rmorphN ?opprK !add0r !addr0 subr0 /=. rewrite -[c%:P in X in _ = X]mulr1 addrC mulrC. rewrite /cofactor -signr_odd addnn odd_double expr0 mul1r /=. rewrite !linearB /= -!map_col' -!map_row'. congr (_ * 'X + c%:P * _). have coefE := (coefD, coefMX, coefC, eqxx, add0r, addr0). rewrite -[X in _ = X](IHp sp Hsp _ p_monic) /char_poly /char_poly_mx. congr (\det (_ - _)). apply/matrixP => k l; rewrite !simp -val_eqE /=; by rewrite /bump ![(sp < _)%N]ltnNge ?leq_ord. apply/matrixP => k l; rewrite !simp. case: splitP => k' /=; rewrite ?ord1 /bump ltnNge leq_ord add0n. case: splitP => [k'' /= |k'' -> //]; rewrite ord1 !simp => k_eq0 _. case: splitP => l' /=; rewrite ?ord1 /bump ltnNge leq_ord add0n !simp; last by move/eqP; rewrite ?addn0 ltn_eqF. move<-; case: splitP => l'' /=; rewrite ?ord1 ?addn0 !simp. by move<-; rewrite subSn ?leq_ord ?coefE. move->; rewrite eqxx mulr1n ?coefE subSn ?subrr //=. by rewrite !rmorphN ?subnn addr0. case: splitP => k'' /=; rewrite ?ord1 => -> // []; rewrite !simp. case: splitP => l' /=; rewrite /bump ltnNge leq_ord add0n !simp -?val_eqE /=; last by rewrite ord1 addn0 => /eqP; rewrite ltn_eqF. by case: splitP => l'' /= -> <- <-; rewrite !simp // ?ord1 ?addn0 ?ltn_eqF. move=> {IHp Hsp p_neq0 p_monic}; rewrite add0n; set s := _ ^+ _; apply: (@mulfI _ s); first by rewrite signr_eq0. rewrite mulrA -expr2 sqrr_sign mulr1 mul1r /s. pose fix D n : 'M[{poly K}]_n.+1 := if n is n'.+1 then block_mx (-1 :'M_1) ('X *: pid_mx 1) 0 (D n') else -1. pose D' n : 'M[{poly K}]_n.+1 := \matrix_(i, j) ('X *+ (i.+1 == j) - (i == j)%:R). set M := (_ - _); have -> : M = D' sp. apply/matrixP => k l; rewrite !simp. case: splitP => k' /=; rewrite ?ord1 !simp // /bump leq0n add1n; case. case: splitP => l' /=; rewrite /bump ltnNge leq_ord add0n; last first. by move/eqP; rewrite ord1 addn0 ltn_eqF. rewrite !simp -!val_eqE /= /bump leq0n ltnNge leq_ord [(true + _)%N]add1n ?add0n. by move=> -> ->; rewrite polyC_muln. have -> n : D' n = D n. clear -simp; elim: n => [|n IHn] //=; apply/matrixP => i j; rewrite !simp. by rewrite !ord1 /= ?mulr0n sub0r. case: splitP => i' /=; rewrite -!val_eqE /= ?ord1 !simp => -> /=. case: splitP => j' /=; rewrite ?ord1 !simp => -> /=; first by rewrite sub0r. by rewrite eqSS andbT subr0 mulr_natr. by case: splitP => j' /=; rewrite ?ord1 -?IHn ?simp => -> //=; rewrite subr0. elim: sp {eq_cast i M eq_i_sp s} => [|n IHn]. by rewrite /= (_ : -1 = (-1)%:M) ?det_scalar // rmorphN. rewrite /= (@det_ublock _ 1 n.+1) IHn. by rewrite (_ : -1 = (-1)%:M) ?det_scalar // rmorphN. Qed. Definition companion (p : {poly K}) : 'M[K]_((size p).-1) := projT1 (companion_subproof p). Lemma companionK (p : {poly K}) : p \is monic -> char_poly (companion p) = p. Proof. exact: projT2 (companion_subproof _). Qed. End Companion. Section Restriction. Variable K : fieldType. Variable m : nat. Variables (V : 'M[K]_m). Implicit Types f : 'M[K]_m. Definition restrict f : 'M_(\rank V) := row_base V *m f *m (pinvmx (row_base V)). Lemma stable_row_base f : (row_base V *m f <= row_base V)%MS = (V *m f <= V)%MS. Proof. rewrite eq_row_base. by apply/idP/idP=> /(submx_trans _) ->; rewrite ?submxMr ?eq_row_base. Qed. Lemma eigenspace_restrict f : (V *m f <= V)%MS -> forall n a (W : 'M_(n, \rank V)), (W <= eigenspace (restrict f) a)%MS = (W *m row_base V <= eigenspace f a)%MS. Proof. move=> f_stabV n a W; apply/eigenspaceP/eigenspaceP; rewrite scalemxAl. by move<-; rewrite -mulmxA -[X in _ = X]mulmxA mulmxKpV ?stable_row_base. move/(congr1 (mulmx^~ (pinvmx (row_base V)))). rewrite -2!mulmxA [_ *m (f *m _)]mulmxA => ->. by apply: (row_free_inj (row_base_free V)); rewrite mulmxKpV ?submxMl. Qed. Lemma eigenvalue_restrict f : (V *m f <= V)%MS -> {subset eigenvalue (restrict f) <= eigenvalue f}. Proof. move=> f_stabV a /eigenvalueP [x /eigenspaceP]; rewrite eigenspace_restrict //. move=> /eigenspaceP Hf x_neq0; apply/eigenvalueP. by exists (x *m row_base V); rewrite ?mul_mx_rowfree_eq0 ?row_base_free. Qed. Lemma restrictM : {in [pred f | (V *m f <= V)%MS] &, {morph restrict : f g / f *m g}}. Proof. move=> f g; rewrite !inE => Vf Vg /=. by rewrite /restrict 2!mulmxA mulmxA mulmxKpV ?stable_row_base. Qed. End Restriction. End extramx. Notation skew K n := (@skew_def _ (Phant K) n). Section Paper_HarmDerksen. (* Following http://www.math.lsa.umich.edu/~hderksen/preprints/linalg.pdf *) (* quite literally except for Lemma5 where we don't use hermitian matrices. *) (* Instead we encode the morphism by hand in 'M[R]_(n * n), which turns out *) (* to be very clumsy for formalizing commutation and the end of Lemma 4. *) (* Moreover, the Qed takes time, so it would be far much better to formalize *) (* Herm C n and use it instead ! *) Implicit Types (K : fieldType). Definition CommonEigenVec_def K (phK : phant K) (d r : nat) := forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) -> forall (sf : seq 'M_m), size sf = r -> {in sf, forall f, (V *m f <= V)%MS} -> {in sf &, forall f g, f *m g = g *m f} -> exists2 v : 'rV_m, (v != 0) & forall f, f \in sf -> exists a, (v <= eigenspace f a)%MS. Notation CommonEigenVec K d r := (@CommonEigenVec_def _ (Phant K) d r). Definition Eigen1Vec_def K (phK : phant K) (d : nat) := forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) -> forall (f : 'M_m), (V *m f <= V)%MS -> exists a, eigenvalue f a. Notation Eigen1Vec K d := (@Eigen1Vec_def _ (Phant K) d). Lemma Eigen1VecP (K : fieldType) (d : nat) : CommonEigenVec K d 1%N <-> Eigen1Vec K d. Proof. split=> [Hd m V HV f|Hd m V HV [] // f [] // _ /(_ _ (mem_head _ _))] f_stabV. have [] := Hd _ _ HV [::f] (erefl _). + by move=> ?; rewrite in_cons orbF => /eqP ->. + by move=> ? ?; rewrite /= !in_cons !orbF => /eqP -> /eqP ->. move=> v v_neq0 /(_ f (mem_head _ _)) [a /eigenspaceP]. by exists a; apply/eigenvalueP; exists v. have [a /eigenvalueP [v /eigenspaceP v_eigen v_neq0]] := Hd _ _ HV _ f_stabV. by exists v => // ?; rewrite in_cons orbF => /eqP ->; exists a. Qed. Lemma Lemma3 K d : Eigen1Vec K d -> forall r, CommonEigenVec K d r.+1. Proof. move=> E1V_K_d; elim => [|r IHr m V]; first exact/Eigen1VecP. move: (\rank V) {-2}V (leqnn (\rank V)) => n {V}. elim: n m => [|n IHn] m V. by rewrite leqn0 => /eqP ->; rewrite dvdn0. move=> le_rV_Sn HrV [] // f sf /= [] ssf f_sf_stabV f_sf_comm. have [->|f_neq0] := altP (f =P 0). have [||v v_neq0 Hsf] := (IHr _ _ HrV _ ssf). + by move=> g f_sf /=; rewrite f_sf_stabV // in_cons f_sf orbT. + move=> g h g_sf h_sf /=. by apply: f_sf_comm; rewrite !in_cons ?g_sf ?h_sf ?orbT. exists v => // g; rewrite in_cons => /orP [/eqP->|]; last exact: Hsf. by exists 0; apply/eigenspaceP; rewrite mulmx0 scale0r. have f_stabV : (V *m f <= V)%MS by rewrite f_sf_stabV ?mem_head. have sf_stabV : {in sf, forall f, (V *m f <= V)%MS}. by move=> g g_sf /=; rewrite f_sf_stabV // in_cons g_sf orbT. pose f' := restrict V f; pose sf' := map (restrict V) sf. have [||a a_eigen_f'] := E1V_K_d _ 1%:M _ f'; do ?by rewrite ?mxrank1 ?submx1. pose W := (eigenspace f' a)%MS; pose Z := (f' - a%:M). have rWZ : (\rank W + \rank Z)%N = \rank V. by rewrite (mxrank_ker (f' - a%:M)) subnK // rank_leq_row. have f'_stabW : (W *m f' <= W)%MS. by rewrite (eigenspaceP (submx_refl _)) scalemx_sub. have f'_stabZ : (Z *m f' <= Z)%MS. rewrite (submx_trans _ (submxMl f' _)) //. by rewrite mulmxDl mulmxDr mulmxN mulNmx scalar_mxC. have sf'_comm : {in [::f' & sf'] &, forall f g, f *m g = g *m f}. move=> g' h' /=; rewrite -!map_cons. move=> /mapP [g g_s_sf -> {g'}] /mapP [h h_s_sf -> {h'}]. by rewrite -!restrictM ?inE /= ?f_sf_stabV // f_sf_comm. have sf'_stabW : {in sf', forall f, (W *m f <= W)%MS}. move=> g g_sf /=; apply/eigenspaceP. rewrite -mulmxA -[g *m _]sf'_comm ?(mem_head, in_cons, g_sf, orbT) //. by rewrite mulmxA scalemxAl (eigenspaceP (submx_refl _)). have sf'_stabZ : {in sf', forall f, (Z *m f <= Z)%MS}. move=> g g_sf /=. rewrite mulmxBl sf'_comm ?(mem_head, in_cons, g_sf, orbT) //. by rewrite -scalar_mxC -mulmxBr submxMl. have [eqWV|neqWV] := altP (@eqmxP _ _ _ _ W 1%:M). have [] // := IHr _ W _ sf'; do ?by rewrite ?eqWV ?mxrank1 ?size_map. move=> g h g_sf' h_sf'; apply: sf'_comm; by rewrite in_cons (g_sf', h_sf') orbT. move=> v v_neq0 Hv; exists (v *m row_base V). by rewrite mul_mx_rowfree_eq0 ?row_base_free. move=> g; rewrite in_cons => /orP [/eqP ->|g_sf]; last first. have [|b] := Hv (restrict V g); first by rewrite map_f. by rewrite eigenspace_restrict // ?sf_stabV //; exists b. by exists a; rewrite -eigenspace_restrict // eqWV submx1. have lt_WV : (\rank W < \rank V)%N. rewrite -[X in (_ < X)%N](@mxrank1 K) rank_ltmx //. by rewrite ltmxEneq neqWV // submx1. have ltZV : (\rank Z < \rank V)%N. rewrite -[X in (_ < X)%N]rWZ -subn_gt0 addnK lt0n mxrank_eq0 -lt0mx. move: a_eigen_f' => /eigenvalueP [v /eigenspaceP] sub_vW v_neq0. by rewrite (ltmx_sub_trans _ sub_vW) // lt0mx. have [] // := IHn _ (if d %| \rank Z then W else Z) _ _ [:: f' & sf']. + by rewrite -ltnS (@leq_trans (\rank V)) //; case: ifP. + by apply: contra HrV; case: ifP => [*|-> //]; rewrite -rWZ dvdn_add. + by rewrite /= size_map ssf. + move=> g; rewrite in_cons => /= /orP [/eqP -> {g}|g_sf']; case: ifP => _ //; by rewrite (sf'_stabW, sf'_stabZ). move=> v v_neq0 Hv; exists (v *m row_base V). by rewrite mul_mx_rowfree_eq0 ?row_base_free. move=> g Hg; have [|b] := Hv (restrict V g); first by rewrite -map_cons map_f. rewrite eigenspace_restrict //; first by exists b. by move: Hg; rewrite in_cons => /orP [/eqP -> //|/sf_stabV]. Qed. Lemma Lemma4 r : CommonEigenVec R 2 r.+1. Proof. apply: Lemma3=> m V hV f f_stabV. have [|a] := @odd_poly_root _ (char_poly (restrict V f)). by rewrite size_char_poly /= -dvdn2. rewrite -eigenvalue_root_char => /eigenvalueP [v] /eigenspaceP v_eigen v_neq0. exists a; apply/eigenvalueP; exists (v *m row_base V). by apply/eigenspaceP; rewrite -eigenspace_restrict. by rewrite mul_mx_rowfree_eq0 ?row_base_free. Qed. Notation toC := (real_complex R). Notation MtoC := (map_mx toC). Lemma Lemma5 : Eigen1Vec R[i] 2. Proof. move=> m V HrV f f_stabV. suff: exists a, eigenvalue (restrict V f) a. by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf. move: (\rank V) (restrict V f) => {f f_stabV V m} n f in HrV *. pose u := map_mx (@Re R) f; pose v := map_mx (@Im R) f. have fE : f = MtoC u + 'i *: MtoC v. rewrite /u /v [f]lock; apply/matrixP => i j; rewrite !mxE /=. by case: (locked f i j) => a b; simpc. move: u v => u v in fE *. pose L1fun : 'M[R]_n -> _ := 2%:R^-1 \*: (mulmxr u \+ (mulmxr v \o trmx) \+ ((mulmx (u^T)) \- (mulmx (v^T) \o trmx))). pose L1 := lin_mx [linear of L1fun]. pose L2fun : 'M[R]_n -> _ := 2%:R^-1 \*: (((@GRing.opp _) \o (mulmxr u \o trmx) \+ mulmxr v) \+ ((mulmx (u^T) \o trmx) \+ (mulmx (v^T)))). pose L2 := lin_mx [linear of L2fun]. have [] := @Lemma4 _ _ 1%:M _ [::L1; L2] (erefl _). + by move: HrV; rewrite mxrank1 !dvdn2 ?negbK odd_mul andbb. + by move=> ? _ /=; rewrite submx1. + suff {f fE}: L1 *m L2 = L2 *m L1. move: L1 L2 => L1 L2 commL1L2 La Lb. rewrite !{1}in_cons !{1}in_nil !{1}orbF. by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry. apply/eqP/mulmxP => x; rewrite [X in X = _]mulmxA [X in _ = X]mulmxA. rewrite 4!mul_rV_lin !mxvecK /= /L1fun /L2fun /=; congr (mxvec (_ *: _)). move=> {L1 L2 L1fun L2fun}. case: n {x} (vec_mx x) => [//|n] x in HrV u v *. do ?[rewrite -(scalemxAl, scalemxAr, scalerN, scalerDr) |rewrite (mulmxN, mulNmx, trmxK, trmx_mul) |rewrite ?[(_ *: _)^T]linearZ ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=]. congr (_ *: _). rewrite !(mulmxDr, mulmxDl, mulNmx, mulmxN, mulmxA, opprD, opprK). do ![move: (_ *m _ *m _)] => t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12. rewrite [X in X + _ + _]addrC [X in X + _ = _]addrACA. rewrite [X in _ = (_ + _ + X) + _]addrC [X in _ = X + _]addrACA. rewrite [X in _ + (_ + _ + X)]addrC [X in _ + X = _]addrACA. rewrite [X in _ = _ + (X + _)]addrC [X in _ = _ + X]addrACA. rewrite [X in X = _]addrACA [X in _ = X]addrACA; congr (_ + _). by rewrite addrC [X in X + _ = _]addrACA [X in _ + X = _]addrACA. move=> g g_neq0 Hg; have [] := (Hg L1, Hg L2). rewrite !(mem_head, in_cons, orbT) => []. move=> [//|a /eigenspaceP g_eigenL1] [//|b /eigenspaceP g_eigenL2]. rewrite !mul_rV_lin /= /L1fun /L2fun /= in g_eigenL1 g_eigenL2. do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL1. do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL2. move=> {L1 L2 L1fun L2fun Hg HrV}. set vg := vec_mx g in g_eigenL1 g_eigenL2. exists (a +i* b); apply/eigenvalueP. pose w := (MtoC vg - 'i *: MtoC vg^T). exists (nz_row w); last first. rewrite nz_row_eq0 subr_eq0; apply: contraNneq g_neq0 => Hvg. rewrite -vec_mx_eq0; apply/eqP/matrixP => i j; rewrite !mxE /=. move: Hvg => /matrixP /(_ i j); rewrite !mxE /=; case. by rewrite !(mul0r, mulr0, add0r, mul1r, oppr0) => ->. apply/eigenspaceP. case: n f => [|n] f in u v g g_neq0 vg w fE g_eigenL1 g_eigenL2 *. by rewrite thinmx0 eqxx in g_neq0. rewrite (submx_trans (nz_row_sub _)) //; apply/eigenspaceP. rewrite fE [a +i* b]complexE /=. rewrite !(mulmxDr, mulmxBl, =^~scalemxAr, =^~scalemxAl) -!map_mxM. rewrite !(scalerDl, scalerDr, scalerN, =^~scalemxAr, =^~scalemxAl). rewrite !scalerA /= mulrAC ['i * _]sqr_i ?mulN1r scaleN1r scaleNr !opprK. rewrite [_ * 'i]mulrC -!scalerA -!map_mxZ /=. do 2!rewrite [X in (_ - _) + X]addrC [_ - 'i *: _ + _]addrACA. rewrite ![- _ + _]addrC -!scalerBr -!(rmorphB, rmorphD) /=. congr (_ + 'i *: _); congr map_mx; rewrite -[_ *: _^T]linearZ /=; rewrite -g_eigenL1 -g_eigenL2 linearZ -(scalerDr, scalerBr); do ?rewrite ?trmxK ?trmx_mul ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=; rewrite -[in X in _ *: (_ + X)]addrC 1?opprD 1?opprB ?mulmxN ?mulNmx; rewrite [X in _ *: X]addrACA. rewrite -mulr2n [X in _ *: (_ + X)]addrACA subrr addNr !addr0. by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r. rewrite subrr addr0 addrA addrAC -addrA -mulr2n addrC. by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r. Qed. Lemma Lemma6 k r : CommonEigenVec R[i] (2^k.+1) r.+1. Proof. elim: k {-2}k (leqnn k) r => [|k IHk] l. by rewrite leqn0 => /eqP ->; apply: Lemma3; apply: Lemma5. rewrite leq_eqVlt ltnS => /orP [/eqP ->|/IHk //] r {l}. apply: Lemma3 => m V Hn f f_stabV {r}. have [dvd2n|Ndvd2n] := boolP (2 %| \rank V); last first. exact: @Lemma5 _ _ Ndvd2n _ f_stabV. suff: exists a, eigenvalue (restrict V f) a. by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf. case: (\rank V) (restrict V f) => {f f_stabV V m} [|n] f in Hn dvd2n *. by rewrite dvdn0 in Hn. pose L1 := lin_mx [linear of mulmxr f \+ (mulmx f^T)]. pose L2 := lin_mx [linear of mulmxr f \o mulmx f^T]. have [] /= := IHk _ (leqnn _) _ _ (skew R[i] n.+1) _ [::L1; L2] (erefl _). + rewrite rank_skew; apply: contra Hn. rewrite -(@dvdn_pmul2r 2) //= -expnSr muln2 -[_.*2]add0n. have n_odd : odd n by rewrite dvdn2 /= ?negbK in dvd2n *. have {2}<- : odd (n.+1 * n) = 0%N :> nat by rewrite odd_mul /= andNb. by rewrite odd_double_half Gauss_dvdl // coprime_pexpl // coprime2n. + move=> L; rewrite 2!in_cons in_nil orbF => /orP [] /eqP ->; apply/rV_subP => v /submxP [s -> {v}]; rewrite mulmxA; apply/skewP; set u := _ *m skew _ _; do [have /skewP : (u <= skew R[i] n.+1)%MS by rewrite submxMl]; rewrite mul_rV_lin /= !mxvecK => skew_u. by rewrite opprD linearD /= !trmx_mul skew_u mulmxN mulNmx addrC trmxK. by rewrite !trmx_mul trmxK skew_u mulNmx mulmxN mulmxA. + suff commL1L2: L1 *m L2 = L2 *m L1. move=> La Lb; rewrite !in_cons !in_nil !orbF. by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry. apply/eqP/mulmxP => u; rewrite !mulmxA !mul_rV_lin ?mxvecK /=. by rewrite !(mulmxDr, mulmxDl, mulmxA). move=> v v_neq0 HL1L2; have [] := (HL1L2 L1, HL1L2 L2). rewrite !(mem_head, in_cons) orbT => [] [] // a vL1 [] // b vL2 {HL1L2}. move/eigenspaceP in vL1; move/eigenspaceP in vL2. move: vL2 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK. move: vL1 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK. move=> /(canRL (addKr _)) ->; rewrite mulmxDl mulNmx => Hv. pose p := 'X^2 + (- a) *: 'X + b%:P. have : vec_mx v *m (horner_mx f p) = 0. rewrite !(rmorphN, rmorphB, rmorphD, rmorphM) /= linearZ /=. rewrite horner_mx_X horner_mx_C !mulmxDr mul_mx_scalar -Hv. rewrite addrAC addrA mulmxA addrN add0r. by rewrite -scalemxAl -scalemxAr scaleNr addrN. rewrite [p]monic_canonical_form; move: (_ / 2%:R) (_ / 2%:R). move=> r2 r1 {Hv p a b L1 L2 Hn}. rewrite rmorphM !rmorphB /= horner_mx_X !horner_mx_C mulmxA => Hv. have: exists2 w : 'M_n.+1, w != 0 & exists a, (w <= eigenspace f a)%MS. move: Hv; set w := vec_mx _ *m _. have [w_eq0 _|w_neq0 r2_eigen] := altP (w =P 0). exists (vec_mx v); rewrite ?vec_mx_eq0 //; exists r1. apply/eigenspaceP/eqP. by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr -/w w_eq0. exists w => //; exists r2; apply/eigenspaceP/eqP. by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr r2_eigen. move=> [w w_neq0 [a /(submx_trans (nz_row_sub _)) /eigenspaceP Hw]]. by exists a; apply/eigenvalueP; exists (nz_row w); rewrite ?nz_row_eq0. Qed. (* We enunciate a corollary of Theorem 7 *) Corollary Theorem7' (m : nat) (f : 'M[R[i]]_m) : (0 < m)%N -> exists a, eigenvalue f a. Proof. case: m f => // m f _; have /Eigen1VecP := @Lemma6 m 0. move=> /(_ m.+1 1 _ f) []; last by move=> a; exists a. + by rewrite mxrank1 (contra (dvdn_leq _)) // -ltnNge ltn_expl. + by rewrite submx1. Qed. Lemma C_acf_axiom : GRing.ClosedField.axiom [ringType of R[i]]. Proof. move=> n c n_gt0; pose p := 'X^n - \poly_(i < n) c i. suff [x rpx] : exists x, root p x. exists x; move: rpx; rewrite /root /p hornerD hornerN hornerXn subr_eq0. by move=> /eqP ->; rewrite horner_poly. have p_monic : p \is monic. rewrite qualifE lead_coefDl ?lead_coefXn //. by rewrite size_opp size_polyXn ltnS size_poly. have sp_gt1 : (size p > 1)%N. by rewrite size_addl size_polyXn // size_opp ltnS size_poly. case: n n_gt0 p => //= n _ p in p_monic sp_gt1 *. have [] := Theorem7' (companion p); first by rewrite -(subnK sp_gt1) addn2. by move=> x; rewrite eigenvalue_root_char companionK //; exists x. Qed. Definition C_decFieldMixin := closed_fields_QEMixin C_acf_axiom. Canonical C_decField := DecFieldType R[i] C_decFieldMixin. Canonical C_closedField := ClosedFieldType R[i] C_acf_axiom. End Paper_HarmDerksen. End ComplexClosed. Definition complexalg := realalg[i]. Canonical complexalg_eqType := [eqType of complexalg]. Canonical complexalg_choiceType := [choiceType of complexalg]. Canonical complexalg_countype := [choiceType of complexalg]. Canonical complexalg_zmodType := [zmodType of complexalg]. Canonical complexalg_ringType := [ringType of complexalg]. Canonical complexalg_comRingType := [comRingType of complexalg]. Canonical complexalg_unitRingType := [unitRingType of complexalg]. Canonical complexalg_comUnitRingType := [comUnitRingType of complexalg]. Canonical complexalg_idomainType := [idomainType of complexalg]. Canonical complexalg_fieldType := [fieldType of complexalg]. Canonical complexalg_decDieldType := [decFieldType of complexalg]. Canonical complexalg_closedFieldType := [closedFieldType of complexalg]. Canonical complexalg_numDomainType := [numDomainType of complexalg]. Canonical complexalg_numFieldType := [numFieldType of complexalg]. Canonical complexalg_numClosedFieldType := [numClosedFieldType of complexalg]. Lemma complexalg_algebraic : integralRange (@ratr [unitRingType of complexalg]). Proof. move=> x; suff [p p_monic] : integralOver (real_complex _ \o realalg_of _) x. by rewrite (eq_map_poly (fmorph_eq_rat _)); exists p. by apply: complex_algebraic_trans; apply: realalg_algebraic. Qed.