(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice. From mathcomp Require Import fintype bigop order ssralg countalg div ssrnum. From mathcomp Require Import ssrint. (******************************************************************************) (* This file defines a datatype for rational numbers and equips it with a *) (* structure of archimedean, real field, with int and nat declared as closed *) (* subrings. *) (* rat == the type of rational number, with single constructor Rat *) (* n%:Q == explicit cast from int to rat, ie. the specialization to *) (* rationals of the generic ring morphism n%:~R *) (* numq r == numerator of (r : rat) *) (* denq r == denominator of (r : rat) *) (* x \is a Qint == x is an element of rat whose denominator is equal to 1 *) (* x \is a Qnat == x is a positive element of rat whose denominator is equal *) (* to 1 *) (* ratr x == generic embedding of (r : R) into an arbitrary unitring. *) (******************************************************************************) Import Order.TTheory GRing.Theory Num.Theory. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Notation sgr := Num.sg. Record rat : Set := Rat { valq : (int * int); _ : (0 < valq.2) && coprime `|valq.1| `|valq.2| }. Bind Scope ring_scope with rat. Delimit Scope rat_scope with Q. Definition ratz (n : int) := @Rat (n, 1) (coprimen1 _). (* Coercion ratz (n : int) := @Rat (n, 1) (coprimen1 _). *) Canonical rat_subType := Eval hnf in [subType for valq]. Definition rat_eqMixin := [eqMixin of rat by <:]. Canonical rat_eqType := EqType rat rat_eqMixin. Definition rat_choiceMixin := [choiceMixin of rat by <:]. Canonical rat_choiceType := ChoiceType rat rat_choiceMixin. Definition rat_countMixin := [countMixin of rat by <:]. Canonical rat_countType := CountType rat rat_countMixin. Canonical rat_subCountType := [subCountType of rat]. Definition numq x := nosimpl ((valq x).1). Definition denq x := nosimpl ((valq x).2). Lemma denq_gt0 x : 0 < denq x. Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed. Hint Resolve denq_gt0 : core. Definition denq_ge0 x := ltW (denq_gt0 x). Lemma denq_lt0 x : (denq x < 0) = false. Proof. by rewrite lt_gtF. Qed. Lemma denq_neq0 x : denq x != 0. Proof. by rewrite /denq gt_eqF ?denq_gt0. Qed. Hint Resolve denq_neq0 : core. Lemma denq_eq0 x : (denq x == 0) = false. Proof. exact: negPf (denq_neq0 _). Qed. Lemma coprime_num_den x : coprime `|numq x| `|denq x|. Proof. by rewrite /numq /denq; case: x=> [[a b] /= /andP []]. Qed. Fact RatK x P : @Rat (numq x, denq x) P = x. Proof. by move: x P => [[a b] P'] P; apply: val_inj. Qed. Fact fracq_subproof : forall x : int * int, let n := if x.2 == 0 then 0 else (-1) ^ ((x.2 < 0) (+) (x.1 < 0)) * (`|x.1| %/ gcdn `|x.1| `|x.2|)%:Z in let d := if x.2 == 0 then 1 else (`|x.2| %/ gcdn `|x.1| `|x.2|)%:Z in (0 < d) && (coprime `|n| `|d|). Proof. move=> [m n] /=; case: (altP (n =P 0))=> [//|n0]. rewrite ltz_nat divn_gt0 ?gcdn_gt0 ?absz_gt0 ?n0 ?orbT //. rewrite dvdn_leq ?absz_gt0 ?dvdn_gcdr //= !abszM absz_sign mul1n. have [->|m0] := altP (m =P 0); first by rewrite div0n gcd0n divnn absz_gt0 n0. move: n0 m0; rewrite -!absz_gt0 absz_nat. move: `|_|%N `|_|%N => {m n} [|m] [|n] // _ _. rewrite /coprime -(@eqn_pmul2l (gcdn m.+1 n.+1)) ?gcdn_gt0 //. rewrite muln_gcdr; do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) ?divnn //. by rewrite ?gcdn_gt0 ?muln1. Qed. Definition fracq (x : int * int) := nosimpl (@Rat (_, _) (fracq_subproof x)). Fact ratz_frac n : ratz n = fracq (n, 1). Proof. by apply: val_inj; rewrite /= gcdn1 !divn1 abszE mulr_sign_norm. Qed. Fact valqK x : fracq (valq x) = x. Proof. move: x => [[n d] /= Pnd]; apply: val_inj=> /=. move: Pnd; rewrite /coprime /fracq /= => /andP[] hd -/eqP hnd. by rewrite lt_gtF ?gt_eqF //= hnd !divn1 mulz_sign_abs abszE gtr0_norm. Qed. Fact scalq_key : unit. Proof. by []. Qed. Definition scalq_def x := sgr x.2 * (gcdn `|x.1| `|x.2|)%:Z. Definition scalq := locked_with scalq_key scalq_def. Canonical scalq_unlockable := [unlockable fun scalq]. Fact scalq_eq0 x : (scalq x == 0) = (x.2 == 0). Proof. case: x => n d; rewrite unlock /= mulf_eq0 sgr_eq0 /= eqz_nat. rewrite -[gcdn _ _ == 0%N]negbK -lt0n gcdn_gt0 ?absz_gt0 [X in ~~ X]orbC. by case: sgrP. Qed. Lemma sgr_scalq x : sgr (scalq x) = sgr x.2. Proof. rewrite unlock sgrM sgr_id -[(gcdn _ _)%:Z]intz sgr_nat. by rewrite -lt0n gcdn_gt0 ?absz_gt0 orbC; case: sgrP; rewrite // mul0r. Qed. Lemma signr_scalq x : (scalq x < 0) = (x.2 < 0). Proof. by rewrite -!sgr_cp0 sgr_scalq. Qed. Lemma scalqE x : x.2 != 0 -> scalq x = (-1) ^+ (x.2 < 0)%R * (gcdn `|x.1| `|x.2|)%:Z. Proof. by rewrite unlock; case: sgrP. Qed. Fact valq_frac x : x.2 != 0 -> x = (scalq x * numq (fracq x), scalq x * denq (fracq x)). Proof. case: x => [n d] /= d_neq0; rewrite /denq /numq scalqE //= (negPf d_neq0). rewrite mulr_signM -mulrA -!PoszM addKb. do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) // divnn. by rewrite gcdn_gt0 !absz_gt0 d_neq0 orbT !muln1 !mulz_sign_abs. Qed. Definition zeroq := fracq (0, 1). Definition oneq := fracq (1, 1). Fact frac0q x : fracq (0, x) = zeroq. Proof. apply: val_inj; rewrite //= div0n !gcd0n !mulr0 !divnn. by have [//|x_neq0] := altP eqP; rewrite absz_gt0 x_neq0. Qed. Fact fracq0 x : fracq (x, 0) = zeroq. Proof. exact/eqP. Qed. Variant fracq_spec (x : int * int) : int * int -> rat -> Type := | FracqSpecN of x.2 = 0 : fracq_spec x (x.1, 0) zeroq | FracqSpecP k fx of k != 0 : fracq_spec x (k * numq fx, k * denq fx) fx. Fact fracqP x : fracq_spec x x (fracq x). Proof. case: x => n d /=; have [d_eq0 | d_neq0] := eqVneq d 0. by rewrite d_eq0 fracq0; constructor. by rewrite {2}[(_, _)]valq_frac //; constructor; rewrite scalq_eq0. Qed. Lemma rat_eqE x y : (x == y) = (numq x == numq y) && (denq x == denq y). Proof. rewrite -val_eqE [val x]surjective_pairing [val y]surjective_pairing /=. by rewrite xpair_eqE. Qed. Lemma sgr_denq x : sgr (denq x) = 1. Proof. by apply/eqP; rewrite sgr_cp0. Qed. Lemma normr_denq x : `|denq x| = denq x. Proof. by rewrite gtr0_norm. Qed. Lemma absz_denq x : `|denq x|%N = denq x :> int. Proof. by rewrite abszE normr_denq. Qed. Lemma rat_eq x y : (x == y) = (numq x * denq y == numq y * denq x). Proof. symmetry; rewrite rat_eqE andbC. have [->|] /= := altP (denq _ =P _); first by rewrite (inj_eq (mulIf _)). apply: contraNF => /eqP hxy; rewrite -absz_denq -[X in _ == X]absz_denq. rewrite eqz_nat /= eqn_dvd. rewrite -(@Gauss_dvdr _ `|numq x|) 1?coprime_sym ?coprime_num_den // andbC. rewrite -(@Gauss_dvdr _ `|numq y|) 1?coprime_sym ?coprime_num_den //. by rewrite -!abszM hxy -{1}hxy !abszM !dvdn_mull ?dvdnn. Qed. Fact fracq_eq x y : x.2 != 0 -> y.2 != 0 -> (fracq x == fracq y) = (x.1 * y.2 == y.1 * x.2). Proof. case: fracqP=> //= u fx u_neq0 _; case: fracqP=> //= v fy v_neq0 _; symmetry. rewrite [X in (_ == X)]mulrC mulrACA [X in (_ == X)]mulrACA. by rewrite [denq _ * _]mulrC (inj_eq (mulfI _)) ?mulf_neq0 // rat_eq. Qed. Fact fracq_eq0 x : (fracq x == zeroq) = (x.1 == 0) || (x.2 == 0). Proof. move: x=> [n d] /=; have [->|d0] := altP (d =P 0). by rewrite fracq0 eqxx orbT. by rewrite orbF fracq_eq ?d0 //= mulr1 mul0r. Qed. Fact fracqMM x n d : x != 0 -> fracq (x * n, x * d) = fracq (n, d). Proof. move=> x_neq0; apply/eqP. have [->|d_neq0] := eqVneq d 0; first by rewrite mulr0 !fracq0. by rewrite fracq_eq ?mulf_neq0 //= mulrCA mulrA. Qed. Definition addq_subdef (x y : int * int) := (x.1 * y.2 + y.1 * x.2, x.2 * y.2). Definition addq (x y : rat) := nosimpl fracq (addq_subdef (valq x) (valq y)). Definition oppq_subdef (x : int * int) := (- x.1, x.2). Definition oppq (x : rat) := nosimpl fracq (oppq_subdef (valq x)). Fact addq_subdefC : commutative addq_subdef. Proof. by move=> x y; rewrite /addq_subdef addrC [_.2 * _]mulrC. Qed. Fact addq_subdefA : associative addq_subdef. Proof. move=> x y z; rewrite /addq_subdef. by rewrite !mulrA !mulrDl addrA ![_ * x.2]mulrC !mulrA. Qed. Fact addq_frac x y : x.2 != 0 -> y.2 != 0 -> (addq (fracq x) (fracq y)) = fracq (addq_subdef x y). Proof. case: fracqP => // u fx u_neq0 _; case: fracqP => // v fy v_neq0 _. rewrite /addq_subdef /= ![(_ * numq _) * _]mulrACA [(_ * denq _) * _]mulrACA. by rewrite [v * _]mulrC -mulrDr fracqMM ?mulf_neq0. Qed. Fact ratzD : {morph ratz : x y / x + y >-> addq x y}. Proof. by move=> x y /=; rewrite !ratz_frac addq_frac // /addq_subdef /= !mulr1. Qed. Fact oppq_frac x : oppq (fracq x) = fracq (oppq_subdef x). Proof. rewrite /oppq_subdef; case: fracqP => /= [|u fx u_neq0]. by rewrite fracq0. by rewrite -mulrN fracqMM. Qed. Fact ratzN : {morph ratz : x / - x >-> oppq x}. Proof. by move=> x /=; rewrite !ratz_frac oppq_frac // /add /= !mulr1. Qed. Fact addqC : commutative addq. Proof. by move=> x y; rewrite /addq /=; rewrite addq_subdefC. Qed. Fact addqA : associative addq. Proof. move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK. by rewrite !addq_frac ?mulf_neq0 ?denq_neq0 // addq_subdefA. Qed. Fact add0q : left_id zeroq addq. Proof. move=> x; rewrite -[x]valqK addq_frac ?denq_neq0 // /addq_subdef /=. by rewrite mul0r add0r mulr1 mul1r -surjective_pairing. Qed. Fact addNq : left_inverse (fracq (0, 1)) oppq addq. Proof. move=> x; rewrite -[x]valqK !(addq_frac, oppq_frac) ?denq_neq0 //. rewrite /addq_subdef /oppq_subdef //= mulNr addNr; apply/eqP. by rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mul0r. Qed. Definition rat_ZmodMixin := ZmodMixin addqA addqC add0q addNq. Canonical rat_ZmodType := ZmodType rat rat_ZmodMixin. Definition mulq_subdef (x y : int * int) := nosimpl (x.1 * y.1, x.2 * y.2). Definition mulq (x y : rat) := nosimpl fracq (mulq_subdef (valq x) (valq y)). Fact mulq_subdefC : commutative mulq_subdef. Proof. by move=> x y; rewrite /mulq_subdef mulrC [_ * x.2]mulrC. Qed. Fact mul_subdefA : associative mulq_subdef. Proof. by move=> x y z; rewrite /mulq_subdef !mulrA. Qed. Definition invq_subdef (x : int * int) := nosimpl (x.2, x.1). Definition invq (x : rat) := nosimpl fracq (invq_subdef (valq x)). Fact mulq_frac x y : (mulq (fracq x) (fracq y)) = fracq (mulq_subdef x y). Proof. rewrite /mulq_subdef; case: fracqP => /= [|u fx u_neq0]. by rewrite mul0r fracq0 /mulq /mulq_subdef /= mul0r frac0q. case: fracqP=> /= [|v fy v_neq0]. by rewrite mulr0 fracq0 /mulq /mulq_subdef /= mulr0 frac0q. by rewrite ![_ * (v * _)]mulrACA fracqMM ?mulf_neq0. Qed. Fact ratzM : {morph ratz : x y / x * y >-> mulq x y}. Proof. by move=> x y /=; rewrite !ratz_frac mulq_frac // /= !mulr1. Qed. Fact invq_frac x : x.1 != 0 -> x.2 != 0 -> invq (fracq x) = fracq (invq_subdef x). Proof. by rewrite /invq_subdef; case: fracqP => // k {x} x k0; rewrite fracqMM. Qed. Fact mulqC : commutative mulq. Proof. by move=> x y; rewrite /mulq mulq_subdefC. Qed. Fact mulqA : associative mulq. Proof. by move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK !mulq_frac mul_subdefA. Qed. Fact mul1q : left_id oneq mulq. Proof. move=> x; rewrite -[x]valqK; rewrite mulq_frac /mulq_subdef. by rewrite !mul1r -surjective_pairing. Qed. Fact mulq_addl : left_distributive mulq addq. Proof. move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK /=. rewrite !(mulq_frac, addq_frac) ?mulf_neq0 ?denq_neq0 //=. apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mulrDl; apply/eqP. by rewrite !mulrA ![_ * (valq z).1]mulrC !mulrA ![_ * (valq x).2]mulrC !mulrA. Qed. Fact nonzero1q : oneq != zeroq. Proof. by []. Qed. Definition rat_comRingMixin := ComRingMixin mulqA mulqC mul1q mulq_addl nonzero1q. Canonical rat_Ring := Eval hnf in RingType rat rat_comRingMixin. Canonical rat_comRing := Eval hnf in ComRingType rat mulqC. Fact mulVq x : x != 0 -> mulq (invq x) x = 1. Proof. rewrite -[x]valqK fracq_eq ?denq_neq0 //= mulr1 mul0r=> nx0. rewrite !(mulq_frac, invq_frac) ?denq_neq0 //. by apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= mulr1 mul1r mulrC. Qed. Fact invq0 : invq 0 = 0. Proof. by apply/eqP. Qed. Definition RatFieldUnitMixin := FieldUnitMixin mulVq invq0. Canonical rat_unitRing := Eval hnf in UnitRingType rat RatFieldUnitMixin. Canonical rat_comUnitRing := Eval hnf in [comUnitRingType of rat]. Fact rat_field_axiom : GRing.Field.mixin_of rat_unitRing. Proof. exact. Qed. Definition RatFieldIdomainMixin := (FieldIdomainMixin rat_field_axiom). Canonical rat_idomainType := Eval hnf in IdomainType rat (FieldIdomainMixin rat_field_axiom). Canonical rat_fieldType := FieldType rat rat_field_axiom. Canonical rat_countZmodType := [countZmodType of rat]. Canonical rat_countRingType := [countRingType of rat]. Canonical rat_countComRingType := [countComRingType of rat]. Canonical rat_countUnitRingType := [countUnitRingType of rat]. Canonical rat_countComUnitRingType := [countComUnitRingType of rat]. Canonical rat_countIdomainType := [countIdomainType of rat]. Canonical rat_countFieldType := [countFieldType of rat]. Lemma numq_eq0 x : (numq x == 0) = (x == 0). Proof. rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {x} x k0]. by rewrite eqxx orbT. by rewrite !mulf_eq0 (negPf k0) /= denq_eq0 orbF. Qed. Notation "n %:Q" := ((n : int)%:~R : rat) (at level 2, left associativity, format "n %:Q") : ring_scope. Hint Resolve denq_neq0 denq_gt0 denq_ge0 : core. Definition subq (x y : rat) : rat := (addq x (oppq y)). Definition divq (x y : rat) : rat := (mulq x (invq y)). Notation "0" := zeroq : rat_scope. Notation "1" := oneq : rat_scope. Infix "+" := addq : rat_scope. Notation "- x" := (oppq x) : rat_scope. Infix "*" := mulq : rat_scope. Notation "x ^-1" := (invq x) : rat_scope. Infix "-" := subq : rat_scope. Infix "/" := divq : rat_scope. (* ratz should not be used, %:Q should be used instead *) Lemma ratzE n : ratz n = n%:Q. Proof. elim: n=> [|n ihn|n ihn]; first by rewrite mulr0z ratz_frac. by rewrite intS mulrzDl ratzD ihn. by rewrite intS opprD mulrzDl ratzD ihn. Qed. Lemma numq_int n : numq n%:Q = n. Proof. by rewrite -ratzE. Qed. Lemma denq_int n : denq n%:Q = 1. Proof. by rewrite -ratzE. Qed. Lemma rat0 : 0%:Q = 0. Proof. by []. Qed. Lemma rat1 : 1%:Q = 1. Proof. by []. Qed. Lemma numqN x : numq (- x) = - numq x. Proof. rewrite /numq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab. by rewrite lt_gtF ?gt_eqF // {2}abszN hab divn1 mulz_sign_abs. Qed. Lemma denqN x : denq (- x) = denq x. Proof. rewrite /denq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab. by rewrite gt_eqF // abszN hab divn1 gtz0_abs. Qed. (* Will be subsumed by pnatr_eq0 *) Fact intq_eq0 n : (n%:~R == 0 :> rat) = (n == 0)%N. Proof. by rewrite -ratzE /ratz rat_eqE /numq /denq /= mulr0 eqxx andbT. Qed. (* fracq should never appear, its canonical form is _%:Q / _%:Q *) Lemma fracqE x : fracq x = x.1%:Q / x.2%:Q. Proof. move: x => [m n] /=. case n0: (n == 0); first by rewrite (eqP n0) fracq0 rat0 invr0 mulr0. rewrite -[m%:Q]valqK -[n%:Q]valqK. rewrite [_^-1]invq_frac ?(denq_neq0, numq_eq0, n0, intq_eq0) //. rewrite [_ / _]mulq_frac /= /invq_subdef /mulq_subdef /=. by rewrite -!/(numq _) -!/(denq _) !numq_int !denq_int mul1r mulr1. Qed. Lemma divq_num_den x : (numq x)%:Q / (denq x)%:Q = x. Proof. by rewrite -{3}[x]valqK [valq _]surjective_pairing /= fracqE. Qed. Variant divq_spec (n d : int) : int -> int -> rat -> Type := | DivqSpecN of d = 0 : divq_spec n d n 0 0 | DivqSpecP k x of k != 0 : divq_spec n d (k * numq x) (k * denq x) x. (* replaces fracqP *) Lemma divqP n d : divq_spec n d n d (n%:Q / d%:Q). Proof. set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. by case: fracqP => [_|k fx k_neq0] /=; constructor. Qed. Lemma divq_eq (nx dx ny dy : rat) : dx != 0 -> dy != 0 -> (nx / dx == ny / dy) = (nx * dy == ny * dx). Proof. move=> dx_neq0 dy_neq0; rewrite -(inj_eq (@mulIf _ (dx * dy) _)) ?mulf_neq0 //. by rewrite mulrA divfK // mulrCA divfK // [dx * _ ]mulrC. Qed. Variant rat_spec (* (x : rat) *) : rat -> int -> int -> Type := Rat_spec (n : int) (d : nat) & coprime `|n| d.+1 : rat_spec (* x *) (n%:Q / d.+1%:Q) n d.+1. Lemma ratP x : rat_spec x (numq x) (denq x). Proof. rewrite -{1}[x](divq_num_den); case hd: denq => [p|n]. have: 0 < p%:Z by rewrite -hd denq_gt0. case: p hd=> //= n hd; constructor; rewrite -?hd ?divq_num_den //. by rewrite -[n.+1]/`|n.+1|%N -hd coprime_num_den. by move: (denq_gt0 x); rewrite hd. Qed. Lemma coprimeq_num n d : coprime `|n| `|d| -> numq (n%:~R / d%:~R) = sgr d * n. Proof. move=> cnd /=; have <- := fracqE (n, d). rewrite /numq /= (eqP (cnd : _ == 1%N)) divn1. have [|d_gt0|d_lt0] := sgrP d; by rewrite (mul0r, mul1r, mulN1r) //= ?[_ ^ _]signrN ?mulNr mulz_sign_abs. Qed. Lemma coprimeq_den n d : coprime `|n| `|d| -> denq (n%:~R / d%:~R) = (if d == 0 then 1 else `|d|). Proof. move=> cnd; have <- := fracqE (n, d). by rewrite /denq /= (eqP (cnd : _ == 1%N)) divn1; case: d {cnd}. Qed. Lemma denqVz (i : int) : i != 0 -> denq (i%:~R^-1) = `|i|. Proof. move=> h; rewrite -div1r -[1]/(1%:~R). by rewrite coprimeq_den /= ?coprime1n // (negPf h). Qed. Lemma numqE x : (numq x)%:~R = x * (denq x)%:~R. Proof. by rewrite -{2}[x]divq_num_den divfK // intq_eq0 denq_eq0. Qed. Lemma denqP x : {d | denq x = d.+1}. Proof. by rewrite /denq; case: x => [[_ [[|d]|]] //= _]; exists d. Qed. Definition normq (x : rat) : rat := `|numq x|%:~R / (denq x)%:~R. Definition le_rat (x y : rat) := numq x * denq y <= numq y * denq x. Definition lt_rat (x y : rat) := numq x * denq y < numq y * denq x. Lemma gt_rat0 x : lt_rat 0 x = (0 < numq x). Proof. by rewrite /lt_rat mul0r mulr1. Qed. Lemma lt_rat0 x : lt_rat x 0 = (numq x < 0). Proof. by rewrite /lt_rat mul0r mulr1. Qed. Lemma ge_rat0 x : le_rat 0 x = (0 <= numq x). Proof. by rewrite /le_rat mul0r mulr1. Qed. Lemma le_rat0 x : le_rat x 0 = (numq x <= 0). Proof. by rewrite /le_rat mul0r mulr1. Qed. Fact le_rat0D x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x + y). Proof. rewrite !ge_rat0 => hnx hny. have hxy: (0 <= numq x * denq y + numq y * denq x). by rewrite addr_ge0 ?mulr_ge0. by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !le_gtF ?mulr_ge0. Qed. Fact le_rat0M x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x * y). Proof. rewrite !ge_rat0 => hnx hny. have hxy: (0 <= numq x * denq y + numq y * denq x). by rewrite addr_ge0 ?mulr_ge0. by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !le_gtF ?mulr_ge0. Qed. Fact le_rat0_anti x : le_rat 0 x -> le_rat x 0 -> x = 0. Proof. by move=> hx hy; apply/eqP; rewrite -numq_eq0 eq_le -ge_rat0 -le_rat0 hx hy. Qed. Lemma sgr_numq_div (n d : int) : sgr (numq (n%:Q / d%:Q)) = sgr n * sgr d. Proof. set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. case: fracqP => [|k fx k_neq0] /=; first by rewrite mulr0. by rewrite !sgrM mulrACA -expr2 sqr_sg k_neq0 sgr_denq mulr1 mul1r. Qed. Fact subq_ge0 x y : le_rat 0 (y - x) = le_rat x y. Proof. symmetry; rewrite ge_rat0 /le_rat -subr_ge0. case: ratP => nx dx cndx; case: ratP => ny dy cndy. rewrite -!mulNr addf_div ?intq_eq0 // !mulNr -!rmorphM -rmorphB /=. symmetry; rewrite !leNgt -sgr_cp0 sgr_numq_div mulrC gtr0_sg //. by rewrite mul1r sgr_cp0. Qed. Fact le_rat_total : total le_rat. Proof. by move=> x y; apply: le_total. Qed. Fact numq_sign_mul (b : bool) x : numq ((-1) ^+ b * x) = (-1) ^+ b * numq x. Proof. by case: b; rewrite ?(mul1r, mulN1r) // numqN. Qed. Fact numq_div_lt0 n d : n != 0 -> d != 0 -> (numq (n%:~R / d%:~R) < 0)%R = (n < 0)%R (+) (d < 0)%R. Proof. move=> n0 d0; rewrite -sgr_cp0 sgr_numq_div !sgr_def n0 d0. by rewrite !mulr1n -signr_addb; case: (_ (+) _). Qed. Lemma normr_num_div n d : `|numq (n%:~R / d%:~R)| = numq (`|n|%:~R / `|d|%:~R). Proof. rewrite (normrEsg n) (normrEsg d) !rmorphM /= invfM mulrACA !sgr_def. have [->|n_neq0] := altP eqP; first by rewrite mul0r mulr0. have [->|d_neq0] := altP eqP; first by rewrite invr0 !mulr0. rewrite !intr_sign invr_sign -signr_addb numq_sign_mul -numq_div_lt0 //. by apply: (canRL (signrMK _)); rewrite mulz_sign_abs. Qed. Fact norm_ratN x : normq (- x) = normq x. Proof. by rewrite /normq numqN denqN normrN. Qed. Fact ge_rat0_norm x : le_rat 0 x -> normq x = x. Proof. rewrite ge_rat0; case: ratP=> [] // n d cnd n_ge0. by rewrite /normq /= normr_num_div ?ger0_norm // divq_num_den. Qed. Fact lt_rat_def x y : (lt_rat x y) = (y != x) && (le_rat x y). Proof. by rewrite /lt_rat lt_def rat_eq. Qed. Definition ratLeMixin : realLeMixin rat_idomainType := RealLeMixin le_rat0D le_rat0M le_rat0_anti subq_ge0 (@le_rat_total 0) norm_ratN ge_rat0_norm lt_rat_def. Canonical rat_porderType := POrderType ring_display rat ratLeMixin. Canonical rat_distrLatticeType := DistrLatticeType rat ratLeMixin. Canonical rat_orderType := OrderType rat le_rat_total. Canonical rat_numDomainType := NumDomainType rat ratLeMixin. Canonical rat_normedZmodType := NormedZmodType rat rat ratLeMixin. Canonical rat_numFieldType := [numFieldType of rat]. Canonical rat_realDomainType := [realDomainType of rat]. Canonical rat_realFieldType := [realFieldType of rat]. Lemma numq_ge0 x : (0 <= numq x) = (0 <= x). Proof. by case: ratP => n d cnd; rewrite ?pmulr_lge0 ?invr_gt0 (ler0z, ltr0z). Qed. Lemma numq_le0 x : (numq x <= 0) = (x <= 0). Proof. by rewrite -oppr_ge0 -numqN numq_ge0 oppr_ge0. Qed. Lemma numq_gt0 x : (0 < numq x) = (0 < x). Proof. by rewrite !ltNge numq_le0. Qed. Lemma numq_lt0 x : (numq x < 0) = (x < 0). Proof. by rewrite !ltNge numq_ge0. Qed. Lemma sgr_numq x : sgz (numq x) = sgz x. Proof. apply/eqP; case: (sgzP x); rewrite sgz_cp0 ?(numq_gt0, numq_lt0) //. by move->. Qed. Lemma denq_mulr_sign (b : bool) x : denq ((-1) ^+ b * x) = denq x. Proof. by case: b; rewrite ?(mul1r, mulN1r) // denqN. Qed. Lemma denq_norm x : denq `|x| = denq x. Proof. by rewrite normrEsign denq_mulr_sign. Qed. Fact rat_archimedean : Num.archimedean_axiom [numDomainType of rat]. Proof. move=> x; exists `|numq x|.+1; rewrite mulrS ltr_spaddl //. rewrite pmulrn abszE intr_norm numqE normrM ler_pemulr //. by rewrite -intr_norm ler1n absz_gt0 denq_eq0. Qed. Canonical archiType := ArchiFieldType rat rat_archimedean. Section QintPred. Definition Qint := [qualify a x : rat | denq x == 1]. Fact Qint_key : pred_key Qint. Proof. by []. Qed. Canonical Qint_keyed := KeyedQualifier Qint_key. Lemma Qint_def x : (x \is a Qint) = (denq x == 1). Proof. by []. Qed. Lemma numqK : {in Qint, cancel (fun x => numq x) intr}. Proof. by move=> x /(_ =P 1 :> int) Zx; rewrite numqE Zx rmorph1 mulr1. Qed. Lemma QintP x : reflect (exists z, x = z%:~R) (x \in Qint). Proof. apply: (iffP idP) => [/numqK <- | [z ->]]; first by exists (numq x). by rewrite Qint_def denq_int. Qed. Fact Qint_subring_closed : subring_closed Qint. Proof. split=> // _ _ /QintP[x ->] /QintP[y ->]; apply/QintP. by exists (x - y); rewrite -rmorphB. by exists (x * y); rewrite -rmorphM. Qed. Canonical Qint_opprPred := OpprPred Qint_subring_closed. Canonical Qint_addrPred := AddrPred Qint_subring_closed. Canonical Qint_mulrPred := MulrPred Qint_subring_closed. Canonical Qint_zmodPred := ZmodPred Qint_subring_closed. Canonical Qint_semiringPred := SemiringPred Qint_subring_closed. Canonical Qint_smulrPred := SmulrPred Qint_subring_closed. Canonical Qint_subringPred := SubringPred Qint_subring_closed. End QintPred. Section QnatPred. Definition Qnat := [qualify a x : rat | (x \is a Qint) && (0 <= x)]. Fact Qnat_key : pred_key Qnat. Proof. by []. Qed. Canonical Qnat_keyed := KeyedQualifier Qnat_key. Lemma Qnat_def x : (x \is a Qnat) = (x \is a Qint) && (0 <= x). Proof. by []. Qed. Lemma QnatP x : reflect (exists n : nat, x = n%:R) (x \in Qnat). Proof. rewrite Qnat_def; apply: (iffP idP) => [/andP []|[n ->]]; last first. by rewrite Qint_def pmulrn denq_int eqxx ler0z. by move=> /QintP [] [] n ->; rewrite ?ler0z // => _; exists n. Qed. Fact Qnat_semiring_closed : semiring_closed Qnat. Proof. do 2?split; move=> // x y; rewrite !Qnat_def => /andP[xQ hx] /andP[yQ hy]. by rewrite rpredD // addr_ge0. by rewrite rpredM // mulr_ge0. Qed. Canonical Qnat_addrPred := AddrPred Qnat_semiring_closed. Canonical Qnat_mulrPred := MulrPred Qnat_semiring_closed. Canonical Qnat_semiringPred := SemiringPred Qnat_semiring_closed. End QnatPred. Lemma natq_div m n : n %| m -> (m %/ n)%:R = m%:R / n%:R :> rat. Proof. by apply: char0_natf_div; apply: char_num. Qed. Section InRing. Variable R : unitRingType. Definition ratr x : R := (numq x)%:~R / (denq x)%:~R. Lemma ratr_int z : ratr z%:~R = z%:~R. Proof. by rewrite /ratr numq_int denq_int divr1. Qed. Lemma ratr_nat n : ratr n%:R = n%:R. Proof. exact: (ratr_int n). Qed. Lemma rpred_rat (S : {pred R}) (ringS : divringPred S) (kS : keyed_pred ringS) a : ratr a \in kS. Proof. by rewrite rpred_div ?rpred_int. Qed. End InRing. Section Fmorph. Implicit Type rR : unitRingType. Lemma fmorph_rat (aR : fieldType) rR (f : {rmorphism aR -> rR}) a : f (ratr _ a) = ratr _ a. Proof. by rewrite fmorph_div !rmorph_int. Qed. Lemma fmorph_eq_rat rR (f : {rmorphism rat -> rR}) : f =1 ratr _. Proof. by move=> a; rewrite -{1}[a]divq_num_den fmorph_div !rmorph_int. Qed. End Fmorph. Section Linear. Implicit Types (U V : lmodType rat) (A B : lalgType rat). Lemma rat_linear U V (f : U -> V) : additive f -> linear f. Proof. move=> fB a u v; pose phi := Additive fB; rewrite [f _](raddfD phi). congr (_ + _); rewrite -{2}[a]divq_num_den mulrC -scalerA. apply: canRL (scalerK _) _; first by rewrite intr_eq0 denq_neq0. by rewrite !scaler_int -raddfMz scalerMzl -mulrzr -numqE scaler_int raddfMz. Qed. Lemma rat_lrmorphism A B (f : A -> B) : rmorphism f -> lrmorphism f. Proof. by case=> /rat_linear fZ fM; do ?split=> //; apply: fZ. Qed. End Linear. Section InPrealField. Variable F : numFieldType. Fact ratr_is_rmorphism : rmorphism (@ratr F). Proof. have injZtoQ: @injective rat int intr by apply: intr_inj. have nz_den x: (denq x)%:~R != 0 :> F by rewrite intr_eq0 denq_eq0. do 2?split; rewrite /ratr ?divr1 // => x y; last first. rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA. do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R. apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock. by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y). apply: (canLR (mulfK (nz_den _))); apply: (mulIf (nz_den x)). rewrite mulrAC mulrBl divfK ?nz_den // mulrAC -!rmorphM. apply: (mulIf (nz_den y)); rewrite mulrAC mulrBl divfK ?nz_den //. rewrite -!(rmorphM, rmorphB); congr _%:~R; apply: injZtoQ. rewrite !(rmorphM, rmorphB) [_ - _]lock /= -lock !numqE. by rewrite (mulrAC y) -!mulrBl -mulrA mulrAC !mulrA. Qed. Canonical ratr_additive := Additive ratr_is_rmorphism. Canonical ratr_rmorphism := RMorphism ratr_is_rmorphism. Lemma ler_rat : {mono (@ratr F) : x y / x <= y}. Proof. move=> x y /=; case: (ratP x) => nx dx cndx; case: (ratP y) => ny dy cndy. rewrite !fmorph_div /= !ratr_int !ler_pdivl_mulr ?ltr0z //. by rewrite ![_ / _ * _]mulrAC !ler_pdivr_mulr ?ltr0z // -!rmorphM /= !ler_int. Qed. Lemma ltr_rat : {mono (@ratr F) : x y / x < y}. Proof. exact: leW_mono ler_rat. Qed. Lemma ler0q x : (0 <= ratr F x) = (0 <= x). Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed. Lemma lerq0 x : (ratr F x <= 0) = (x <= 0). Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed. Lemma ltr0q x : (0 < ratr F x) = (0 < x). Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed. Lemma ltrq0 x : (ratr F x < 0) = (x < 0). Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed. Lemma ratr_sg x : ratr F (sgr x) = sgr (ratr F x). Proof. by rewrite !sgr_def fmorph_eq0 ltrq0 rmorphMn rmorph_sign. Qed. Lemma ratr_norm x : ratr F `|x| = `|ratr F x|. Proof. by rewrite {2}[x]numEsign rmorphMsign normrMsign [`|ratr F _|]ger0_norm ?ler0q. Qed. End InPrealField. Arguments ratr {R}. (* Conntecting rationals to the ring an field tactics *) Ltac rat_to_ring := rewrite -?[0%Q]/(0 : rat)%R -?[1%Q]/(1 : rat)%R -?[(_ - _)%Q]/(_ - _ : rat)%R -?[(_ / _)%Q]/(_ / _ : rat)%R -?[(_ + _)%Q]/(_ + _ : rat)%R -?[(_ * _)%Q]/(_ * _ : rat)%R -?[(- _)%Q]/(- _ : rat)%R -?[(_ ^-1)%Q]/(_ ^-1 : rat)%R /=. Ltac ring_to_rat := rewrite -?[0%R]/0%Q -?[1%R]/1%Q -?[(_ - _)%R]/(_ - _)%Q -?[(_ / _)%R]/(_ / _)%Q -?[(_ + _)%R]/(_ + _)%Q -?[(_ * _)%R]/(_ * _)%Q -?[(- _)%R]/(- _)%Q -?[(_ ^-1)%R]/(_ ^-1)%Q /=. Lemma rat_ring_theory : (ring_theory 0%Q 1%Q addq mulq subq oppq eq). Proof. split => * //; rat_to_ring; by rewrite ?(add0r, addrA, mul1r, mulrA, mulrDl, subrr) // (addrC, mulrC). Qed. Require setoid_ring.Field_theory setoid_ring.Field_tac. Lemma rat_field_theory : Field_theory.field_theory 0%Q 1%Q addq mulq subq oppq divq invq eq. Proof. split => //; first exact rat_ring_theory. by move=> p /eqP p_neq0; rat_to_ring; rewrite mulVf. Qed. Add Field rat_field : rat_field_theory.