From d7167e988d194e98157f7d7f837d933c7299ba2a Mon Sep 17 00:00:00 2001 From: thery Date: Wed, 24 Jun 2020 16:00:24 +0200 Subject: simpler proof --- mathcomp/ssreflect/bigop.v | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mathcomp') diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v index 5f1b7d7..c6b2dfc 100644 --- a/mathcomp/ssreflect/bigop.v +++ b/mathcomp/ssreflect/bigop.v @@ -1823,7 +1823,7 @@ Lemma prod_nat_const n : \prod_(i in A) n = n ^ #|A|. Proof. by rewrite big_const -Monoid.iteropE. Qed. Lemma sum_nat_const_nat n1 n2 n : \sum_(n1 <= i < n2) n = (n2 - n1) * n. -Proof. by rewrite big_const_nat; elim: (_ - _) => //= ? ->. Qed. +Proof. by rewrite big_const_nat iter_addn_0 mulnC. Qed. Lemma prod_nat_const_nat n1 n2 n : \prod_(n1 <= i < n2) n = n ^ (n2 - n1). Proof. by rewrite big_const_nat -Monoid.iteropE. Qed. -- cgit v1.2.3