From 359abfc1d67843216b0362d2fee3b8d650ff7ec0 Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Mon, 18 Nov 2019 15:19:09 +0100 Subject: Documenting `L` and `R` in `CONTRIBUTING.md` --- mathcomp/ssreflect/ssrnat.v | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'mathcomp') diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index 434479d..6e54a55 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -517,14 +517,14 @@ Proof. by rewrite -subn_eq0 -subnDA. Qed. Lemma leq_subr m n : n - m <= n. Proof. by rewrite leq_subLR leq_addl. Qed. -Lemma ltn_subl m n : n < n - m = false. +Lemma ltn_subrR m n : (n < n - m) = false. Proof. by rewrite ltnNge leq_subr. Qed. -Lemma leq_subl m n : n <= n - m = (m == 0) || (n == 0). -Proof. by case: m n => [|m] [|n]; rewrite ?subn0 ?leqnn ?ltn_subl. Qed. +Lemma leq_subrR m n : (n <= n - m) = (m == 0) || (n == 0). +Proof. by case: m n => [|m] [|n]; rewrite ?subn0 ?leqnn ?ltn_subrR. Qed. -Lemma ltn_subr m n : n - m < n = (0 < m) && (0 < n). -Proof. by rewrite ltnNge leq_subl negb_or !lt0n. Qed. +Lemma ltn_subrL m n : (n - m < n) = (0 < m) && (0 < n). +Proof. by rewrite ltnNge leq_subrR negb_or !lt0n. Qed. Lemma subnKC m n : m <= n -> m + (n - m) = n. Proof. by elim: m n => [|m IHm] [|n] // /(IHm n) {2}<-. Qed. -- cgit v1.2.3