From bc0a71056c24b29c8289395ee01740bb2ef7ad8d Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 18 Nov 2019 17:40:51 +0100 Subject: [test suite] infrastructure to test how some statements are printed --- mathcomp/test_suite/output.v | 4 +++ mathcomp/test_suite/output.v.out | 48 ++++++++++++++++++++++++++++++++++ mathcomp/test_suite/output.v.out.8.12 | 48 ++++++++++++++++++++++++++++++++++ mathcomp/test_suite/output.v.out.8.13 | 49 +++++++++++++++++++++++++++++++++++ 4 files changed, 149 insertions(+) create mode 100644 mathcomp/test_suite/output.v create mode 100644 mathcomp/test_suite/output.v.out create mode 100644 mathcomp/test_suite/output.v.out.8.12 create mode 100644 mathcomp/test_suite/output.v.out.8.13 (limited to 'mathcomp/test_suite') diff --git a/mathcomp/test_suite/output.v b/mathcomp/test_suite/output.v new file mode 100644 index 0000000..706f15d --- /dev/null +++ b/mathcomp/test_suite/output.v @@ -0,0 +1,4 @@ +From mathcomp Require Import all. + +Open Scope group_scope. +About cyclic_pgroup_Aut_structure. \ No newline at end of file diff --git a/mathcomp/test_suite/output.v.out b/mathcomp/test_suite/output.v.out new file mode 100644 index 0000000..bc5d3c8 --- /dev/null +++ b/mathcomp/test_suite/output.v.out @@ -0,0 +1,48 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure diff --git a/mathcomp/test_suite/output.v.out.8.12 b/mathcomp/test_suite/output.v.out.8.12 new file mode 100644 index 0000000..bc5d3c8 --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.12 @@ -0,0 +1,48 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure diff --git a/mathcomp/test_suite/output.v.out.8.13 b/mathcomp/test_suite/output.v.out.8.13 new file mode 100644 index 0000000..0546b70 --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.13 @@ -0,0 +1,49 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope _ _ + _ +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure -- cgit v1.2.3 From c0214cdb4a44261db539b48fb76dbdaded87312b Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 9 Sep 2020 15:22:29 +0200 Subject: default reference file for < 8.12 --- mathcomp/test_suite/output.v.out | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'mathcomp/test_suite') diff --git a/mathcomp/test_suite/output.v.out b/mathcomp/test_suite/output.v.out index bc5d3c8..122ddf0 100644 --- a/mathcomp/test_suite/output.v.out +++ b/mathcomp/test_suite/output.v.out @@ -1,5 +1,5 @@ cyclic_pgroup_Aut_structure : -forall [gT : finGroupType] [p : nat] [G : {group gT}], +forall (gT : finGroupType) (p : nat) (G : {group gT}), p.-group G -> cyclic G -> G != 1 :> {set gT} -> @@ -42,7 +42,7 @@ exists m : {perm gT} -> 'Z_q, m (s0 * t) = ((2 ^ n).-1%:R)%R & 'Ohm_1(<[s]>) = <[s0]>]]]] -cyclic_pgroup_Aut_structure is not universe polymorphic -Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope +Arguments gT, p, G are implicit +Argument scopes are [_ nat_scope Group_scope _ _ _] cyclic_pgroup_Aut_structure is opaque Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure -- cgit v1.2.3 From c7b1927d8072040d573757d543e2355e8280b9ee Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 10 Sep 2020 15:22:50 +0200 Subject: new attempt --- mathcomp/test_suite/output.v | 2 +- mathcomp/test_suite/output.v.out | 91 +++++++++++++++++------------------ mathcomp/test_suite/output.v.out.8.12 | 48 ------------------ mathcomp/test_suite/output.v.out.8.13 | 49 ------------------- 4 files changed, 45 insertions(+), 145 deletions(-) delete mode 100644 mathcomp/test_suite/output.v.out.8.12 delete mode 100644 mathcomp/test_suite/output.v.out.8.13 (limited to 'mathcomp/test_suite') diff --git a/mathcomp/test_suite/output.v b/mathcomp/test_suite/output.v index 706f15d..7e9def3 100644 --- a/mathcomp/test_suite/output.v +++ b/mathcomp/test_suite/output.v @@ -1,4 +1,4 @@ From mathcomp Require Import all. Open Scope group_scope. -About cyclic_pgroup_Aut_structure. \ No newline at end of file +Check @cyclic_pgroup_Aut_structure. \ No newline at end of file diff --git a/mathcomp/test_suite/output.v.out b/mathcomp/test_suite/output.v.out index 122ddf0..4db5888 100644 --- a/mathcomp/test_suite/output.v.out +++ b/mathcomp/test_suite/output.v.out @@ -1,48 +1,45 @@ -cyclic_pgroup_Aut_structure : -forall (gT : finGroupType) (p : nat) (G : {group gT}), -p.-group G -> -cyclic G -> -G != 1 :> {set gT} -> -let q := #|G| in -let n := (logn p q).-1 in -let A := Aut G in -let P := 'O_p(A) in -let F := 'O_p^'(A) in -exists m : {perm gT} -> 'Z_q, - [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, - m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, - {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, - forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} - & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], - [/\ abelian A, cyclic F, #|F| = p.-1 - & [faithful F, on 'Ohm_1(G) | [Aut G]]] - & if n == 0 - then A = F - else - exists t : perm_for_finType gT, - [/\ t \in A, #[t] = 2, m t = (-1)%R - & if odd p - then - [/\ cyclic A /\ cyclic P, - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R - & P = <[s]>] - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R - & 'Ohm_1(P) = <[s0]>]] +cyclic_pgroup_Aut_structure + : forall (gT : finGroupType) (p : nat) (G : {group gT}), + p.-group G -> + cyclic G -> + G != 1 -> + let q := #|G| in + let n := (logn p q).-1 in + let A := Aut G in + let P := 'O_p(A) in + let F := 'O_p^'(A) in + exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, + {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F else - if n == 1 - then A = <[t]> - else - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (2 ^ n.-1)%N, - m s = (5%:R)%R, <[s]> \x <[t]> = A - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, - m (s0 * t) = ((2 ^ n).-1%:R)%R - & 'Ohm_1(<[s]>) = <[s0]>]]]] - -Arguments gT, p, G are implicit -Argument scopes are [_ nat_scope Group_scope _ _ _] -cyclic_pgroup_Aut_structure is opaque -Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, + m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] diff --git a/mathcomp/test_suite/output.v.out.8.12 b/mathcomp/test_suite/output.v.out.8.12 deleted file mode 100644 index bc5d3c8..0000000 --- a/mathcomp/test_suite/output.v.out.8.12 +++ /dev/null @@ -1,48 +0,0 @@ -cyclic_pgroup_Aut_structure : -forall [gT : finGroupType] [p : nat] [G : {group gT}], -p.-group G -> -cyclic G -> -G != 1 :> {set gT} -> -let q := #|G| in -let n := (logn p q).-1 in -let A := Aut G in -let P := 'O_p(A) in -let F := 'O_p^'(A) in -exists m : {perm gT} -> 'Z_q, - [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, - m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, - {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, - forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} - & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], - [/\ abelian A, cyclic F, #|F| = p.-1 - & [faithful F, on 'Ohm_1(G) | [Aut G]]] - & if n == 0 - then A = F - else - exists t : perm_for_finType gT, - [/\ t \in A, #[t] = 2, m t = (-1)%R - & if odd p - then - [/\ cyclic A /\ cyclic P, - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R - & P = <[s]>] - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R - & 'Ohm_1(P) = <[s0]>]] - else - if n == 1 - then A = <[t]> - else - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (2 ^ n.-1)%N, - m s = (5%:R)%R, <[s]> \x <[t]> = A - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, - m (s0 * t) = ((2 ^ n).-1%:R)%R - & 'Ohm_1(<[s]>) = <[s0]>]]]] - -cyclic_pgroup_Aut_structure is not universe polymorphic -Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope -cyclic_pgroup_Aut_structure is opaque -Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure diff --git a/mathcomp/test_suite/output.v.out.8.13 b/mathcomp/test_suite/output.v.out.8.13 deleted file mode 100644 index 0546b70..0000000 --- a/mathcomp/test_suite/output.v.out.8.13 +++ /dev/null @@ -1,49 +0,0 @@ -cyclic_pgroup_Aut_structure : -forall [gT : finGroupType] [p : nat] [G : {group gT}], -p.-group G -> -cyclic G -> -G != 1 :> {set gT} -> -let q := #|G| in -let n := (logn p q).-1 in -let A := Aut G in -let P := 'O_p(A) in -let F := 'O_p^'(A) in -exists m : {perm gT} -> 'Z_q, - [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, - m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, - {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, - forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} - & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], - [/\ abelian A, cyclic F, #|F| = p.-1 - & [faithful F, on 'Ohm_1(G) | [Aut G]]] - & if n == 0 - then A = F - else - exists t : perm_for_finType gT, - [/\ t \in A, #[t] = 2, m t = (-1)%R - & if odd p - then - [/\ cyclic A /\ cyclic P, - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R - & P = <[s]>] - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R - & 'Ohm_1(P) = <[s0]>]] - else - if n == 1 - then A = <[t]> - else - exists s : perm_for_finType gT, - [/\ s \in A, #[s] = (2 ^ n.-1)%N, - m s = (5%:R)%R, <[s]> \x <[t]> = A - & exists s0 : perm_for_finType gT, - [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, - m (s0 * t) = ((2 ^ n).-1%:R)%R - & 'Ohm_1(<[s]>) = <[s0]>]]]] - -cyclic_pgroup_Aut_structure is not universe polymorphic -Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope _ _ - _ -cyclic_pgroup_Aut_structure is opaque -Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure -- cgit v1.2.3 From f3ad9538962cd36d90ea3a6724125f448d7c0b10 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 11 Sep 2020 09:52:42 +0200 Subject: fix 8.9, 8.8 and 8.7 --- mathcomp/test_suite/output.v.out.8.7 | 1 + mathcomp/test_suite/output.v.out.8.8 | 1 + mathcomp/test_suite/output.v.out.8.9 | 46 ++++++++++++++++++++++++++++++++++++ 3 files changed, 48 insertions(+) create mode 120000 mathcomp/test_suite/output.v.out.8.7 create mode 120000 mathcomp/test_suite/output.v.out.8.8 create mode 100644 mathcomp/test_suite/output.v.out.8.9 (limited to 'mathcomp/test_suite') diff --git a/mathcomp/test_suite/output.v.out.8.7 b/mathcomp/test_suite/output.v.out.8.7 new file mode 120000 index 0000000..896b7ac --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.7 @@ -0,0 +1 @@ +output.v.out.8.9 \ No newline at end of file diff --git a/mathcomp/test_suite/output.v.out.8.8 b/mathcomp/test_suite/output.v.out.8.8 new file mode 120000 index 0000000..896b7ac --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.8 @@ -0,0 +1 @@ +output.v.out.8.9 \ No newline at end of file diff --git a/mathcomp/test_suite/output.v.out.8.9 b/mathcomp/test_suite/output.v.out.8.9 new file mode 100644 index 0000000..25583d5 --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.9 @@ -0,0 +1,46 @@ +cyclic_pgroup_Aut_structure + : forall (gT : finGroupType) (p : nat) (G : {group gT}), + p.-group G -> + cyclic G -> + G != 1 -> + let q := #|G| in + let n := (logn p q).-1 in + let A := Aut G in + let P := 'O_p(A) in + let F := 'O_p^'(A) in + exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, + {in A, {morph m : a / a ^+ k >-> + (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, + m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] -- cgit v1.2.3 From 38b28c7d9756da7d346a1866a4ce712b1c3472af Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 14 Sep 2020 15:11:14 +0200 Subject: don't use all.v in output.v --- mathcomp/test_suite/output.v | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'mathcomp/test_suite') diff --git a/mathcomp/test_suite/output.v b/mathcomp/test_suite/output.v index 7e9def3..b0b0996 100644 --- a/mathcomp/test_suite/output.v +++ b/mathcomp/test_suite/output.v @@ -1,4 +1,10 @@ -From mathcomp Require Import all. +From mathcomp Require Import + all_ssreflect + all_algebra + all_field + all_character + all_fingroup + all_solvable. Open Scope group_scope. Check @cyclic_pgroup_Aut_structure. \ No newline at end of file -- cgit v1.2.3