From 6be8fd5c67949a59bde7083e81401263986e7a4e Mon Sep 17 00:00:00 2001 From: Georges Gonthier Date: Sun, 28 Apr 2019 20:37:17 +0200 Subject: Generalise use of `{pred T}` from coq/coq#9995 Use `{pred T}` systematically for generic _collective_ boolean predicate. Use `PredType` to construct `predType` instances. Instrument core `ssreflect` files to replicate these and other new features introduces by coq/coq#9555 (`nonPropType` interface, `simpl_rel` that simplifies with `inE`). --- mathcomp/solvable/gfunctor.v | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'mathcomp/solvable') diff --git a/mathcomp/solvable/gfunctor.v b/mathcomp/solvable/gfunctor.v index 31ffded..3417d84 100644 --- a/mathcomp/solvable/gfunctor.v +++ b/mathcomp/solvable/gfunctor.v @@ -266,7 +266,7 @@ Variable F : GFunctor.iso_map. Lemma gFsub gT (G : {group gT}) : F gT G \subset G. Proof. by case: F gT G. Qed. -Lemma gFsub_trans gT (G : {group gT}) (A : pred_class) : +Lemma gFsub_trans gT (G : {group gT}) (A : {pred gT}) : G \subset A -> F gT G \subset A. Proof. exact/subset_trans/gFsub. Qed. @@ -297,7 +297,7 @@ Proof. exact/char_trans/gFchar. Qed. Lemma gFnormal_trans gT (G H : {group gT}) : H <| G -> F gT H <| G. Proof. exact/char_normal_trans/gFchar. Qed. -Lemma gFnorm_trans gT (A : pred_class) (G : {group gT}) : +Lemma gFnorm_trans gT (A : {pred gT}) (G : {group gT}) : A \subset 'N(G) -> A \subset 'N(F gT G). Proof. by move/subset_trans/(_ (gFnorms G)). Qed. -- cgit v1.2.3