From c6e0d703165b0c60c270672eb542aa8934929bfe Mon Sep 17 00:00:00 2001 From: Kazuhiko Sakaguchi Date: Fri, 9 Oct 2020 00:21:00 +0900 Subject: Switch from long suffixes to short suffixes --- mathcomp/solvable/abelian.v | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) (limited to 'mathcomp/solvable/abelian.v') diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 469c649..ba26ab6 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -177,7 +177,7 @@ have [-> | nt_x] := eqVneq x 1. apply: (iffP idP) => [/eqP | [p p_pr /eqP x_pn]]. by exists (pdiv #[x]); rewrite ?pdiv_prime ?order_gt1. rewrite (@pdiv_p_elt p) //; rewrite -order_dvdn in x_pn. -by rewrite [p_elt _ _](pnat_dvd x_pn) // pnat_exp pnat_id. +by rewrite [p_elt _ _](pnat_dvd x_pn) // pnatX pnat_id. Qed. Lemma Mho_p_elt (p : nat) x : x \in A -> p.-elt x -> x ^+ (p ^ n) \in Mho. @@ -390,7 +390,7 @@ Proof. by rewrite /abelem pgroup1 abelian1 exponent1 dvd1n. Qed. Lemma abelemE p G : prime p -> p.-abelem G = abelian G && (exponent G %| p). Proof. move=> p_pr; rewrite /abelem -pnat_exponent andbA -!(andbC (_ %| _)). -by case: (dvdn_pfactor _ 1 p_pr) => // [[k _ ->]]; rewrite pnat_exp pnat_id. +by case: (dvdn_pfactor _ 1 p_pr) => // [[k _ ->]]; rewrite pnatX pnat_id. Qed. Lemma abelemP p G : @@ -2177,4 +2177,3 @@ Lemma fin_ring_char_abelem p (R : finRingType) : Proof. exact: fin_lmod_char_abelem [finLmodType R of R^o]. Qed. End FimModAbelem. - -- cgit v1.2.3