From 6be8fd5c67949a59bde7083e81401263986e7a4e Mon Sep 17 00:00:00 2001 From: Georges Gonthier Date: Sun, 28 Apr 2019 20:37:17 +0200 Subject: Generalise use of `{pred T}` from coq/coq#9995 Use `{pred T}` systematically for generic _collective_ boolean predicate. Use `PredType` to construct `predType` instances. Instrument core `ssreflect` files to replicate these and other new features introduces by coq/coq#9555 (`nonPropType` interface, `simpl_rel` that simplifies with `inE`). --- mathcomp/character/classfun.v | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'mathcomp/character/classfun.v') diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 2cf17aa..468aa66 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -1066,7 +1066,7 @@ have [-> | nzV] := eqVneq V 0; first by rewrite cfdot0r !mul0r subrr. by rewrite divfK ?cfnorm_eq0 ?subrr. Qed. -Lemma map_orthogonal M (nu : 'CF(G) -> 'CF(M)) S R (A : pred 'CF(G)) : +Lemma map_orthogonal M (nu : 'CF(G) -> 'CF(M)) S R (A : {pred 'CF(G)}) : {in A &, isometry nu} -> {subset S <= A} -> {subset R <= A} -> orthogonal (map nu S) (map nu R) = orthogonal S R. Proof. @@ -1290,7 +1290,7 @@ Section BuildIsometries. Variable (gT : finGroupType) (L G : {group gT}). Implicit Types (phi psi xi : 'CF(L)) (R S : seq 'CF(L)). -Implicit Types (U : pred 'CF(L)) (W : pred 'CF(G)). +Implicit Types (U : {pred 'CF(L)}) (W : {pred 'CF(G)}). Lemma sub_iso_to U1 U2 W1 W2 tau : {subset U2 <= U1} -> {subset W1 <= W2} -> -- cgit v1.2.3