From 66c7010194f5946cc4f07edc55f92129d0963b99 Mon Sep 17 00:00:00 2001 From: Jasper Hugunin Date: Thu, 22 Feb 2018 00:48:18 -0800 Subject: Change Implicit Arguments to Arguments in character --- mathcomp/character/classfun.v | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) (limited to 'mathcomp/character/classfun.v') diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 81c26ab..3afaa82 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -557,7 +557,7 @@ rewrite big1 ?addr0 // => _ /andP[/imsetP[y Gy ->]]; apply: contraNeq. rewrite cfunE cfun_repr cfun_classE Gy mulf_eq0 => /norP[_]. by rewrite pnatr_eq0 -lt0n lt0b => /class_eqP->. Qed. -Implicit Arguments cfun_onP [A phi]. +Arguments cfun_onP [A phi]. Lemma cfun_on0 A phi x : phi \in 'CF(G, A) -> x \notin A -> phi x = 0. Proof. by move/cfun_onP; apply. Qed. @@ -759,7 +759,7 @@ End ClassFun. Arguments Scope classfun_on [_ group_scope group_scope]. Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope. -Implicit Arguments cfun_onP [gT G A phi]. +Arguments cfun_onP [gT G A phi]. Hint Resolve cfun_onT. Section DotProduct. @@ -1009,7 +1009,7 @@ Lemma orthoPl phi S : Proof. by rewrite [orthogonal _ S]andbT /=; apply: (iffP allP) => ophiS ? /ophiS/eqP. Qed. -Implicit Arguments orthoPl [phi S]. +Arguments orthoPl [phi S]. Lemma orthogonal_sym : symmetric (@orthogonal _ G). Proof. @@ -1242,12 +1242,12 @@ Qed. End DotProduct. -Implicit Arguments orthoP [gT G phi psi]. -Implicit Arguments orthoPl [gT G phi S]. -Implicit Arguments orthoPr [gT G S psi]. -Implicit Arguments orthogonalP [gT G R S]. -Implicit Arguments pairwise_orthogonalP [gT G S]. -Implicit Arguments orthonormalP [gT G S]. +Arguments orthoP [gT G phi psi]. +Arguments orthoPl [gT G phi S]. +Arguments orthoPr [gT G S psi]. +Arguments orthogonalP [gT G S R]. +Arguments pairwise_orthogonalP [gT G S]. +Arguments orthonormalP [gT G S]. Section CfunOrder. @@ -1273,7 +1273,7 @@ Proof. by apply/eqP; rewrite -dvdn_cforder. Qed. End CfunOrder. -Implicit Arguments dvdn_cforderP [gT G phi n]. +Arguments dvdn_cforderP [gT G phi n]. Section MorphOrder. @@ -1621,7 +1621,7 @@ Proof. exact: cforder_inj_rmorph cfIsom_inj. Qed. End InvMorphism. -Implicit Arguments cfIsom_inj [aT rT G R f x1 x2]. +Arguments cfIsom_inj [aT rT G f R] isoGR [x1 x2]. Section Coset. @@ -2487,9 +2487,9 @@ Proof. by rewrite rmorphM /= cfAutDprodl cfAutDprodr. Qed. End FieldAutomorphism. -Implicit Arguments cfAutK [[gT] [G]]. -Implicit Arguments cfAutVK [[gT] [G]]. -Implicit Arguments cfAut_inj [gT G x1 x2]. +Arguments cfAutK u {gT G}. +Arguments cfAutVK u {gT G}. +Arguments cfAut_inj u [gT G x1 x2]. Definition conj_cfRes := cfAutRes conjC. Definition cfker_conjC := cfker_aut conjC. -- cgit v1.2.3