From e2fb620d4a2bb6da26d344b69f22befdde09b1d0 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Wed, 16 Sep 2020 01:33:27 +0900 Subject: comparable_big lemma in order.v --- mathcomp/algebra/ssrnum.v | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'mathcomp/algebra') diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index c28aec2..36498b3 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -1786,8 +1786,8 @@ Lemma min_real : {in real &, forall x y, min x y \is real}. Proof. by move=> x y ? ?; case: real_leP. Qed. Lemma bigmax_real I x0 (r : seq I) (P : pred I) (f : I -> R): - x0 \is real -> {in P, forall t : I, f t \is real} -> - \big[max/x0]_(t <- r | P t) f t \is real. + x0 \is real -> {in P, forall i : I, f i \is real} -> + \big[max/x0]_(i <- r | P i) f i \is real. Proof. by move=> x0r Pr; elim/big_rec : _ => // i x Pi xr; rewrite max_real ?Pr. Qed. -- cgit v1.2.3